Design principles for sodium superionic conductors.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 Nov 2023
22 Nov 2023
Historique:
received:
30
08
2023
accepted:
09
11
2023
medline:
23
11
2023
pubmed:
23
11
2023
entrez:
22
11
2023
Statut:
epublish
Résumé
Motivated by the high-performance solid-state lithium batteries enabled by lithium superionic conductors, sodium superionic conductor materials have great potential to empower sodium batteries with high energy, low cost, and sustainability. A critical challenge lies in designing and discovering sodium superionic conductors with high ionic conductivities to enable the development of solid-state sodium batteries. Here, by studying the structures and diffusion mechanisms of Li-ion versus Na-ion conducting solids, we reveal the structural feature of face-sharing high-coordination sites for fast sodium-ion conductors. By applying this feature as a design principle, we discover a number of Na-ion conductors in oxides, sulfides, and halides. Notably, we discover a chloride-based family of Na-ion conductors Na
Identifiants
pubmed: 37993459
doi: 10.1038/s41467-023-43436-3
pii: 10.1038/s41467-023-43436-3
pmc: PMC10665354
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7615Subventions
Organisme : National Science Foundation (NSF)
ID : 2118838
Informations de copyright
© 2023. The Author(s).
Références
Nat Commun. 2017 Jun 21;8:15893
pubmed: 28635958
Nat Mater. 2015 Oct;14(10):1026-31
pubmed: 26280225
Angew Chem Int Ed Engl. 2007;46(41):7778-81
pubmed: 17803180
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
pubmed: 9984901
Nat Commun. 2019 Nov 20;10(1):5260
pubmed: 31748523
Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979
pubmed: 9976227
Adv Mater. 2018 Nov;30(44):e1803075
pubmed: 30216562
Chem Rev. 2016 Jan 13;116(1):140-62
pubmed: 26713396
Nat Mater. 2022 Aug;21(8):924-931
pubmed: 35361915
Nat Mater. 2019 Dec;18(12):1278-1291
pubmed: 31427742
Angew Chem Int Ed Engl. 2008;47(4):755-8
pubmed: 18161703
Nature. 2016 May 16;534(7606):231-4
pubmed: 27279218
Nat Commun. 2016 Jun 09;7:11722
pubmed: 27277345
Science. 2021 Sep 24;373(6562):1494-1499
pubmed: 34554780
Inorg Chem. 2021 Feb 1;60(3):1590-1603
pubmed: 33417450
Angew Chem Int Ed Engl. 2019 Jun 11;58(24):8039-8043
pubmed: 30977261
Nat Commun. 2016 Mar 17;7:11009
pubmed: 26984102
J Am Chem Soc. 2018 Jan 10;140(1):362-368
pubmed: 29224340
J Am Chem Soc. 2020 Apr 15;142(15):7012-7022
pubmed: 32212650
Nat Commun. 2019 Nov 20;10(1):5266
pubmed: 31748566
Nat Mater. 2023 Aug;22(8):999-1006
pubmed: 37202488
Science. 2011 Nov 18;334(6058):935-9
pubmed: 22096189
ACS Cent Sci. 2017 Jan 25;3(1):52-57
pubmed: 28149953
J Am Chem Soc. 2015 Jul 22;137(28):9136-45
pubmed: 26118319
Nat Mater. 2011 Jul 31;10(9):682-6
pubmed: 21804556
Nat Mater. 2022 Nov;21(11):1298-1305
pubmed: 36050382
Chem Mater. 2021 Mar 23;33(6):2004-2018
pubmed: 33840894
J Phys Condens Matter. 2007 Aug 22;19(33):335219
pubmed: 21694142