Research progress of additional pathogenic mutations in chronic neutrophilic leukemia.

Additional pathogenic mutations Chronic neutrophil leukemia Clonal evolution Myeloproliferative neoplasms Targeted medicine

Journal

Annals of hematology
ISSN: 1432-0584
Titre abrégé: Ann Hematol
Pays: Germany
ID NLM: 9107334

Informations de publication

Date de publication:
22 Nov 2023
Historique:
received: 28 09 2023
accepted: 13 11 2023
medline: 23 11 2023
pubmed: 23 11 2023
entrez: 22 11 2023
Statut: aheadofprint

Résumé

Chronic neutrophilic leukemia (CNL) is a rare type of myeloproliferative neoplasm (MPN). Due to its nonspecific clinical symptoms and lack of specific molecular markers, it was previously difficult to distinguish it from other diseases with increased neutrophils. However, the discovery of the CSF3R mutation in CNL 10 years ago and the update of the diagnostic criteria by the World Health Organization (WHO) in 2016 brought CNL into a new era of molecular diagnosis. Next-generation sequencing (NGS) technology has led to the identification of numerous mutant genes in CNL. While CSF3R is commonly recognized as the driver mutation of CNL, other mutations have also been detected in CNL using NGS, including mutations in other signaling pathway genes (CBL, JAK2, NARS, PTPN11) and chromatin modification genes (ASXL1, SETBP1, EZH2), DNA methylation genes (DNMT3A, TET2), myeloid-related transcription factor genes (RUNX1, GATA2), and splicing and RNA metabolism genes (SRSF2, U2AF1). The coexistence of these mutated genes and CSF3R mutations, as well as the different evolutionary sequences of clones, deepens the complexity of CNL molecular biology. The purpose of this review is to summarize the genetic research findings of CNL in the last decade, focusing on the common mutated genes in CNL and their clinical significance, as well as the clonal evolution pattern and sequence of mutation acquisition in CNL, to provide a basis for the appropriate management of CNL patients.

Identifiants

pubmed: 37993585
doi: 10.1007/s00277-023-05550-6
pii: 10.1007/s00277-023-05550-6
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Szuber N, Elliott M, Tefferi A (2022) Chronic neutrophilic leukemia: 2022 update on diagnosis, genomic landscape, prognosis, and management. Am J Hematol 97(4):491–505. https://doi.org/10.1002/ajh.26481
doi: 10.1002/ajh.26481 pubmed: 35089603
Maxson JE, Gotlib J, Pollyea DA, Fleischman AG, Agarwal A, Eide CA, Bottomly D, Wilmot B, McWeeney SK, Tognon CE, Pond JB, Collins RH, Goueli B, Oh ST, Deininger MW, Chang BH, Loriaux MM, Druker BJ, Tyner JW (2013) Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med 368(19):1781–1790. https://doi.org/10.1056/NEJMoa1214514
doi: 10.1056/NEJMoa1214514 pubmed: 23656643 pmcid: 3730275
Pardanani A, Lasho TL, Laborde RR, Elliott M, Hanson CA, Knudson RA, Ketterling RP, Maxson JE, Tyner JW, Tefferi A (2013) CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia 27(9):1870–1873. https://doi.org/10.1038/leu.2013.122
doi: 10.1038/leu.2013.122 pubmed: 23604229 pmcid: 4100617
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405. https://doi.org/10.1182/blood-2016-03-643544
doi: 10.1182/blood-2016-03-643544 pubmed: 27069254
Maxson JE, Tyner JW (2017) Genomics of chronic neutrophilic leukemia. Blood 129(6):715–722. https://doi.org/10.1182/blood-2016-10-695981
doi: 10.1182/blood-2016-10-695981 pubmed: 28028025 pmcid: 5301820
Maxson JE, Luty SB, MacManiman JD, Abel ML, Druker BJ, Tyner JW (2014) Ligand independence of the T618I mutation in the colony-stimulating factor 3 receptor (CSF3R) protein results from loss of O-linked glycosylation and increased receptor dimerization. J Biol Chem 289(9):5820–5827. https://doi.org/10.1074/jbc.M113.508440
doi: 10.1074/jbc.M113.508440 pubmed: 24403076 pmcid: 3937653
Price A, Druhan LJ, Lance A, Clark G, Vestal CG, Zhang Q, Foureau D, Parsons J, Hamilton A, Steuerwald NM, Avalos BR (2020) T618I CSF3R mutations in chronic neutrophilic leukemia induce oncogenic signals through aberrant trafficking and constitutive phosphorylation of the O-glycosylated receptor form. Biochem Biophys Res Commun 523(1):208–213. https://doi.org/10.1016/j.bbrc.2019.12.030
doi: 10.1016/j.bbrc.2019.12.030 pubmed: 31848046
Szuber N, Finke CM, Lasho TL, Elliott MA, Hanson CA, Pardanani A, Tefferi A (2018) CSF3R-mutated chronic neutrophilic leukemia: long-term outcome in 19 consecutive patients and risk model for survival. Blood Cancer J 8(2):21. https://doi.org/10.1038/s41408-018-0058-7
doi: 10.1038/s41408-018-0058-7 pubmed: 29449543 pmcid: 5814430
Hossfeld DK, Lokhorst HW, Garbrecht M (1987) Neutrophilic leukemia accompanied by hemorrhagic diathesis: report of two cases. Blut 54(2):109–113. https://doi.org/10.1007/BF00321039
doi: 10.1007/BF00321039 pubmed: 3469004
Noguchi T, Ikeda K, Yamamoto K, Ashiba A, Yoshida J, Munemasa M, Takenaka K, Shinagawa K, Ishimaru F, Yoshino T, Niiya K, Harada M (2001) Severe bleeding tendency caused by leukemic infiltration and destruction of vascular walls in chronic neutrophilic leukemia. Int J Hematol 74(4):437–441. https://doi.org/10.1007/BF02982088
doi: 10.1007/BF02982088 pubmed: 11794700
Mitsumori T, Komatsu N, Kirito K (2016) A CSF3R T618I Mutation in a patient with chronic neutrophilic leukemia and severe bleeding complications. Intern Med 55(4):405–407. https://doi.org/10.2169/internalmedicine.55.5059
doi: 10.2169/internalmedicine.55.5059 pubmed: 26875968
Fleischman AG, Maxson JE, Luty SB, Agarwal A, Royer LR, Abel ML, MacManiman JD, Loriaux MM, Druker BJ, Tyner JW (2013) The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood 122(22):3628–3631. https://doi.org/10.1182/blood-2013-06-509976
doi: 10.1182/blood-2013-06-509976 pubmed: 24081659 pmcid: 3837511
Li YP, Chen N, Ye XM, Xia YS (2020) Eighty-year-old man with rare chronic neutrophilic leukemia caused by CSF3R T618I mutation: a case report and review of literature. World J Clin Cases 8(24):6337–6345. https://doi.org/10.12998/wjcc.v8.i24.6337
doi: 10.12998/wjcc.v8.i24.6337 pubmed: 33392315 pmcid: 7760438
Talon L, de Renzis B, Fiore M, Sanhes L, Sapin AF, Berger M, Sinegre T, Lebreton A (2020) Fatal intracerebral hemorrhage in a patient with chronic neutrophilic leukemia: about one case and literature review. Rev Med Interne 41(8):552–558. https://doi.org/10.1016/j.revmed.2020.03.012
doi: 10.1016/j.revmed.2020.03.012 pubmed: 32362366
Boddy CS, Tan BT, Aoki J (2020) B-lymphoblastic leukemia arising in a patient with chronic neutrophilic leukemia. Blood Adv 4(21):5389–5392. https://doi.org/10.1182/bloodadvances.2020003109
doi: 10.1182/bloodadvances.2020003109 pubmed: 33147336 pmcid: 7656922
Gotlib J, Maxson JE, George TI, Tyner JW (2013) The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment. Blood 122(10):1707–1711. https://doi.org/10.1182/blood-2013-05-500959
doi: 10.1182/blood-2013-05-500959 pubmed: 23896413 pmcid: 3765056
Meggendorfer M, Haferlach T, Alpermann T, Jeromin S, Haferlach C, Kern W, Schnittger S (2014) Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia. Haematologica 99(12):e244-246. https://doi.org/10.3324/haematol.2014.113159
doi: 10.3324/haematol.2014.113159 pubmed: 25239264 pmcid: 4258749
Elliott MA, Pardanani A, Hanson CA, Lasho TL, Finke CM, Belachew AA, Tefferi A (2015) ASXL1 mutations are frequent and prognostically detrimental in CSF3R-mutated chronic neutrophilic leukemia. Am J Hematol 90(7):653–656. https://doi.org/10.1002/ajh.24031
doi: 10.1002/ajh.24031 pubmed: 25850813
Ouyang Y, Qiao C, Chen Y, Zhang SJ (2017) Clinical significance of CSF3R, SRSF2 and SETBP1 mutations in chronic neutrophilic leukemia and chronic myelomonocytic leukemia. Oncotarget 8(13):20834–20841. https://doi.org/10.18632/oncotarget.15355
doi: 10.18632/oncotarget.15355 pubmed: 28209919 pmcid: 5400549
Cui YJ, Jiang Q, Liu JQ, Li B, Xu ZF, Qin TJ, Zhang Y, Cai WY, Zhang HL, Fang LW, Pan LJ, Hu NB, Qu SQ, Xiao ZJ (2017) The clinical characteristics, gene mutations and prognosis of chronic neutrophilic leukemia. Zhonghua Xue Ye Xue Za Zhi 38(1):28–32. https://doi.org/10.3760/cma.j.issn.0253-2727.2017.01.006
doi: 10.3760/cma.j.issn.0253-2727.2017.01.006 pubmed: 28219221
Zhang H, Wilmot B, Bottomly D, Dao KT, Stevens E, Eide CA, Khanna V, Rofelty A, Savage S, Reister Schultz A, Long N, White L, Carlos A, Henson R, Lin C, Searles R, Collins RH, DeAngelo DJ, Deininger MW, Dunn T, Hein T, Luskin MR, Medeiros BC, Oh ST, Pollyea DA, Steensma DP, Stone RM, Druker BJ, McWeeney SK, Maxson JE, Gotlib JR, Tyner JW (2019) Genomic landscape of neutrophilic leukemias of ambiguous diagnosis. Blood 134(11):867–879. https://doi.org/10.1182/blood.2019000611
doi: 10.1182/blood.2019000611 pubmed: 31366621 pmcid: 6742922
Dao KT, Gotlib J, Deininger MMN, Oh ST, Cortes JE, Collins RH Jr, Winton EF, Parker DR, Lee H, Reister A, Schultz SS, Stevens BC, Subbiah N, Press RD, Raess PW, Cascio M, Dunlap J, Chen Y, Degnin C, Maxson JE, Tognon CE, Macey T, Druker BJ, Tyner JW (2020) Efficacy of ruxolitinib in patients with chronic neutrophilic leukemia and atypical chronic myeloid leukemia. J Clin Oncol 38(10):1006–1018. https://doi.org/10.1200/JCO.19.00895
doi: 10.1200/JCO.19.00895 pubmed: 31880950
Guo YJ, Wang Y, Wang LH, Zuo YB, Niu ZY, Lin FR, Zhang JY (2020) Analysis of clinical features and prognosis of patients with chronic neutrophil leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 28(1):82–87. https://doi.org/10.19746/j.cnki.issn.1009-2137.2020.01.014
doi: 10.19746/j.cnki.issn.1009-2137.2020.01.014 pubmed: 32027257
Carreno-Tarragona G, Alvarez-Larran A, Harrison C, Martinez-Avila JC, Hernandez-Boluda JC, Ferrer-Marin F, Radia DH, Mora E, Francis S, Gonzalez-Martinez T, Goddard K, Perez-Encinas M, Narayanan S, Raya JM, Singh V, Gutierrez X, Toth P, Amat-Martinez P, McIlwaine L, Alobaidi M, Mayani K, McGregor A, Stuckey R, Psaila B, Segura A, Alvares C, Davidson K, Osorio S, Cutting R, Sweeney CP, Rufian L, Moreno L, Cuenca I, Smith J, Morales ML, Gil-Manso R, Koutsavlis I, Wang L, Mead AJ, Rozman M, Martinez-Lopez J, Ayala R, Cross NCP (2023) CNL and aCML should be considered as a single entity based on molecular profiles and outcomes. Blood Adv 7(9):1672–1681. https://doi.org/10.1182/bloodadvances.2022008204
doi: 10.1182/bloodadvances.2022008204 pubmed: 36375042
Thomopoulos TP, Symeonidis A, Kourakli A, Papageorgiou SG, Pappa V (2022) Chronic neutrophilic leukemia: a comprehensive review of clinical characteristics, genetic landscape and management. Front Oncol 12:891961. https://doi.org/10.3389/fonc.2022.891961
doi: 10.3389/fonc.2022.891961 pubmed: 35494007 pmcid: 9048254
Jing J, Greshock J, Holbrook JD, Gilmartin A, Zhang X, McNeil E, Conway T, Moy C, Laquerre S, Bachman K, Wooster R, Degenhardt Y (2012) Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol Cancer Ther 11(3):720–729. https://doi.org/10.1158/1535-7163.MCT-11-0505
doi: 10.1158/1535-7163.MCT-11-0505 pubmed: 22169769
Langabeer SE, Haslam K, Kelly J, Quinn J, Morrell R, Conneally E (2018) Targeted next-generation sequencing identifies clinically relevant mutations in patients with chronic neutrophilic leukemia at diagnosis and blast crisis. Clin Transl Oncol 20(3):420–423. https://doi.org/10.1007/s12094-017-1722-2
doi: 10.1007/s12094-017-1722-2 pubmed: 28762112
Gao JP, Zhai LJ, Gao XH, Min FL (2022) Chronic neutrophilic leukemia complicated with monoclonal gammopathy of undetermined significance: a case report and literature review. J Clin Lab Anal 36(4):e24287. https://doi.org/10.1002/jcla.24287
doi: 10.1002/jcla.24287 pubmed: 35170077 pmcid: 8993655
Stoner RC, Press RD, Maxson JE, Tyner JW, Dao KT (2020) Insights on mechanisms of clonal evolution in chronic neutrophilic leukemia on ruxolitinib therapy. Leukemia 34(6):1684–1688. https://doi.org/10.1038/s41375-019-0688-1
doi: 10.1038/s41375-019-0688-1 pubmed: 31844143
Miao Y, Li B, Ding L, Zhu H, Luo C, Wang J, Luo C, Chen J (2020) PTPN11 mutation with additional somatic alteration indicates unfavorable outcome in juvenile myelomonocytic leukemia: a retrospective clinical study from a single center. Eur J Pediatr 179(3):463–472. https://doi.org/10.1007/s00431-019-03468-8
doi: 10.1007/s00431-019-03468-8 pubmed: 31807902
Mayerhofer C, Niemeyer CM, Flotho C (2021) Current treatment of juvenile myelomonocytic leukemia. J Clin Med 10 (14). https://doi.org/10.3390/jcm10143084
Wang X, Resendes NM, Shanahan L, Hutchinson L, Woda B, Cerny J (2020) Chronic neutrophilic leukemia, a rare case of leukocytosis. Leuk Res 94:106384. https://doi.org/10.1016/j.leukres.2020.106384
doi: 10.1016/j.leukres.2020.106384 pubmed: 32447046
Kirienko AN, Motyko EV, Kustova DV, Efremova EV, Morozova EV, Shikhbabaeva DI, Vinogradova OY, Semenova NY, Enukashvily NI, Shuvaev VA, Voloshin SV, Sidorkevich SV, Martynkevich IS (2022) MPN-225 next generation sequencing (NGS) in the diagnosis, prognosis and features of the disease in Ph-negative myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk 22(Suppl 2):S330–S331. https://doi.org/10.1016/S2152-2650(22)01447-1
doi: 10.1016/S2152-2650(22)01447-1
Gajendra S, Gupta R, Chandgothia M, Kumar L, Gupta R, Chavan SM (2014) Chronic neutrophilic leukemia with V617F JAK2 mutation. Indian J Hematol Blood Transfus 30(2):139–142. https://doi.org/10.1007/s12288-012-0203-6
doi: 10.1007/s12288-012-0203-6 pubmed: 24839370
Yin B, Chen X, Gao F, Li J, Wang HW (2019) Analysis of gene mutation characteristics in patients with chronic neutrophilic leukaemia. Hematology 24(1):538–543. https://doi.org/10.1080/16078454.2019.1642554
doi: 10.1080/16078454.2019.1642554 pubmed: 31315541
Gao J, Gao J, Min F (2023) Chronic neutrophilic leukemia with JAK2 mutation: is it true chronic neutrophilic leukemia? Ann Hematol. https://doi.org/10.1007/s00277-023-05376-2
doi: 10.1007/s00277-023-05376-2 pubmed: 37951853 pmcid: 10640527
Duan R, Du W, Guo W (2020) EZH2: a novel target for cancer treatment. J Hematol Oncol 13(1):104. https://doi.org/10.1186/s13045-020-00937-8
doi: 10.1186/s13045-020-00937-8 pubmed: 32723346 pmcid: 7385862
Li B, Mascarenhas JO, Rampal RK (2018) Leukemic transformation of myeloproliferative neoplasms: therapeutic and genomic considerations. Curr Hematol Malig Rep 13(6):588–595. https://doi.org/10.1007/s11899-018-0491-5
doi: 10.1007/s11899-018-0491-5 pubmed: 30353413
Luo Q, Shen J, Yang Y, Tang H, Shi M, Liu J, Liu Z, Shi X, Yi Y (2018) CSF3R T618I, ASXL1 G942 fs and STAT5B N642H trimutation co-contribute to a rare chronic neutrophilic leukaemia manifested by rapidly progressive leucocytosis, severe infections, persistent fever and deep venous thrombosis. Br J Haematol 180(6):892–894. https://doi.org/10.1111/bjh.14456
doi: 10.1111/bjh.14456 pubmed: 27984641
Shou LH, Cao D, Dong XH, Fang Q, Wu Y, Zhang Y, Fei JP, Xu BL (2017) Prognostic significance of SETBP1 mutations in myelodysplastic syndromes, chronic myelomonocytic leukemia, and chronic neutrophilic leukemia: a meta-analysis. PLoS ONE 12(2):e0171608. https://doi.org/10.1371/journal.pone.0171608
doi: 10.1371/journal.pone.0171608 pubmed: 28158286 pmcid: 5291491
Zheng WS, Guan LX, Cheng LC, Hu YL, Xu YY, Yang T, Peng B, Wu YL, Bo J, Wang QS, Gao XN (2020) Ruxolitinib in the treatment of two cases of chronic neutrophilic leukemia. Zhonghua Zhong Liu Za Zhi 42(2):113–114. https://doi.org/10.3760/cma.j.issn.0253-3766.2020.02.005
doi: 10.3760/cma.j.issn.0253-3766.2020.02.005 pubmed: 32135644
Wang ZQ, Li YJ, Wang DH, Yang EP, Li YM, Niu JC, Sun MQ, Chen Z, Liu WY, Hu XM (2022) Analysis of DNA methylation gene mutations and clinical features in patients with myeloproliferative neoplasm. Zhongguo Shi Yan Xue Ye Xue Za Zhi 30(2):522–528. https://doi.org/10.19746/j.cnki.issn.1009-2137.2022.02.033
doi: 10.19746/j.cnki.issn.1009-2137.2022.02.033 pubmed: 35395990
Abedi E, Ramzi M, Karimi M, Yaghobi R, Mohammadi H, Bayat E, Moghadam M, Farokhian F, Dehghani M, Golafshan HA, Haghpanah S (2021) TET2, DNMT3A, IDH1, and JAK2 mutation in myeloproliferative neoplasms in southern Iran. Int J Organ Transplant Med 12(3):12–20
pubmed: 35509721 pmcid: 9013495
Chia YC, Islam MA, Hider P, Woon PY, Johan MF, Hassan R, Ramli M (2021) The prevalence of TET2 gene mutations in patients with BCR-ABL-negative myeloproliferative neoplasms (MPN): a systematic review and meta-analysis. Cancers (Basel) 13 (12). https://doi.org/10.3390/cancers13123078
Zhang QG, Wang J, Gong WY, Jing QC (2019) Clonal evolution in a chronic neutrophilic leukemia patient. Hematology 24(1):455–458. https://doi.org/10.1080/16078454.2019.1613291
doi: 10.1080/16078454.2019.1613291 pubmed: 31076019
Hinze A, Rinke J, Hochhaus A, Ernst T (2021) Durable remission with ruxolitinib in a chronic neutrophilic leukemia patient harboring a truncation and membrane proximal CSF3R compound mutation. Ann Hematol 100(2):581–584. https://doi.org/10.1007/s00277-020-04152-w
doi: 10.1007/s00277-020-04152-w pubmed: 32577845
Deltcheva E, Nimmo R (2017) RUNX transcription factors at the interface of stem cells and cancer. Biochem J 474(11):1755–1768. https://doi.org/10.1042/BCJ20160632
doi: 10.1042/BCJ20160632 pubmed: 28490659
Yokota A, Huo L, Lan F, Wu J, Huang G (2020) The clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies. Mol Cells 43(2):145–152. https://doi.org/10.14348/molcells.2019.0252
doi: 10.14348/molcells.2019.0252 pubmed: 31964134 pmcid: 7057846
Crispino JD, Horwitz MS (2017) GATA factor mutations in hematologic disease. Blood 129(15):2103–2110. https://doi.org/10.1182/blood-2016-09-687889
doi: 10.1182/blood-2016-09-687889 pubmed: 28179280 pmcid: 5391620
Nooruddin Z, Miltgen N, Wei Q, Schowinsky J, Pan Z, Tobin J, Purev E, Gutman JA, Robinson W, Pollyea DA (2017) Changes in allele frequencies of CSF3R and SETBP1 mutations and evidence of clonal evolution in a chronic neutrophilic leukemia patient treated with ruxolitinib. Haematologica 102(5):e207–e209. https://doi.org/10.3324/haematol.2016.163089
doi: 10.3324/haematol.2016.163089 pubmed: 28209656 pmcid: 5477626
Will CL, Luhrmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3 (7). https://doi.org/10.1101/cshperspect.a003707
Turunen JJ, Niemela EH, Verma B, Frilander MJ (2013) The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA 4(1):61–76. https://doi.org/10.1002/wrna.1141
doi: 10.1002/wrna.1141 pubmed: 23074130
Palomo L, Meggendorfer M, Hutter S, Twardziok S, Adema V, Fuhrmann I, Fuster-Tormo F, Xicoy B, Zamora L, Acha P, Kerr CM, Kern W, Maciejewski JP, Sole F, Haferlach C, Haferlach T (2020) Molecular landscape and clonal architecture of adult myelodysplastic/myeloproliferative neoplasms. Blood 136(16):1851–1862. https://doi.org/10.1182/blood.2019004229
doi: 10.1182/blood.2019004229 pubmed: 32573691 pmcid: 7645608
Bartels S, Vogtmann J, Schipper E, Busche G, Schlue J, Lehmann U, Kreipe H (2021) Combination of myeloproliferative neoplasm driver gene activation with mutations of splice factor or epigenetic modifier genes increases risk of rapid blastic progression. Eur J Haematol 106(4):520–528. https://doi.org/10.1111/ejh.13579
doi: 10.1111/ejh.13579 pubmed: 33460496
Senin A, Arenillas L, Martinez-Aviles L, Fernandez-Rodriguez C, Bellosillo B, Florensa L, Besses C, Alvarez-Larran A (2015) Molecular characterization of atypical chronic myeloid leukemia and chronic neutrophilic leukemia. Med Clin (Barc) 144(11):487–490. https://doi.org/10.1016/j.medcli.2014.03.020
doi: 10.1016/j.medcli.2014.03.020 pubmed: 24854193
Qian Y, Chen Y, Li X (2021) CSF3R T618I, SETBP1 G870S, SRSF2 P95H, and ASXL1 Q780* tetramutation co-contribute to myeloblast transformation in a chronic neutrophilic leukemia. Ann Hematol 100(6):1459–1461. https://doi.org/10.1007/s00277-021-04491-2
doi: 10.1007/s00277-021-04491-2 pubmed: 33822276 pmcid: 8116236
Meggendorfer M, Jeromin S, Haferlach C, Kern W, Haferlach T (2018) The mutational landscape of 18 investigated genes clearly separates four subtypes of myelodysplastic/myeloproliferative neoplasms. Haematologica 103(5):e192–e195. https://doi.org/10.3324/haematol.2017.183160
doi: 10.3324/haematol.2017.183160 pubmed: 29700173 pmcid: 5927999
Carratt SA, Kong GL, Curtiss BM, Schonrock Z, Maloney L, Maniaci BN, Blaylock HZ, Baris A, Druker BJ, Braun TP, Maxson JE (2022) Mutated SETBP1 activates transcription of Myc programs to accelerate CSF3R-driven myeloproliferative neoplasms. Blood 140(6):644–658. https://doi.org/10.1182/blood.2021014777
doi: 10.1182/blood.2021014777 pubmed: 35482940 pmcid: 9373012
Marneth AE, Mullally A (2020) The molecular genetics of myeloproliferative neoplasms. Cold Spring Harb Perspect Med 10 (2). https://doi.org/10.1101/cshperspect.a034876
Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, Baxter EJ, Massie CE, Papaemmanuil E, Menon S, Godfrey AL, Dimitropoulou D, Guglielmelli P, Bellosillo B, Besses C, Dohner K, Harrison CN, Vassiliou GS, Vannucchi A, Campbell PJ, Green AR (2015) Effect of mutation order on myeloproliferative neoplasms. N Engl J Med 372(7):601–612. https://doi.org/10.1056/NEJMoa1412098
doi: 10.1056/NEJMoa1412098 pubmed: 25671252 pmcid: 4660033
Nangalia J, Nice FL, Wedge DC, Godfrey AL, Grinfeld J, Thakker C, Massie CE, Baxter J, Sewell D, Silber Y, Campbell PJ, Green AR (2015) DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica 100(11):e438-442. https://doi.org/10.3324/haematol.2015.129510
doi: 10.3324/haematol.2015.129510 pubmed: 26250577 pmcid: 4825297
Byun JM, Song S, Koh Y, Yoon SS, Kim D (2019) The temporal sequence and the differences in somatic mutation acquisition determines clinical behaviors of JAK2-positive myeloproliferative neoplasms. Anticancer Res 39(11):6273–6282. https://doi.org/10.21873/anticanres.13837
doi: 10.21873/anticanres.13837 pubmed: 31704857
Lasho TL, Mims A, Elliott MA, Finke C, Pardanani A, Tefferi A (2014) Chronic neutrophilic leukemia with concurrent CSF3R and SETBP1 mutations: single colony clonality studies, in vitro sensitivity to JAK inhibitors and lack of treatment response to ruxolitinib. Leukemia 28(6):1363–1365. https://doi.org/10.1038/leu.2014.39
doi: 10.1038/leu.2014.39 pubmed: 24445868
Meyer S, Feremans W, Cantiniaux B, Capel P, Huygen K, Dicato M (1993) Successful alpha-2b-interferon therapy for chronic neutrophilic leukemia. Am J Hematol 43(4):307–309. https://doi.org/10.1002/ajh.2830430416
doi: 10.1002/ajh.2830430416 pubmed: 8372813
Zhang X, Pan J, Guo J (2013) Presence of the JAK2 V617F mutation in a patient with chronic neutrophilic leukemia and effective response to interferon alpha-2b. Acta Haematol 130(1):44–46. https://doi.org/10.1159/000345851
doi: 10.1159/000345851 pubmed: 23391844
Szuber N, Tefferi A (2021) Current management of chronic neutrophilic leukemia. Curr Treat Options Oncol 22(7):59. https://doi.org/10.1007/s11864-021-00856-x
doi: 10.1007/s11864-021-00856-x pubmed: 34097138
Hu NB, Fang LW, Qin TJ, Xiao ZJ, Xu ZF (2018) Ruxolitinib for chronic neutrophilic leukemia: a case report and literature review. Zhonghua Xue Ye Xue Za Zhi 39(12):1029–1032. https://doi.org/10.3760/cma.j.issn.0253-2727.2018.12.012
doi: 10.3760/cma.j.issn.0253-2727.2018.12.012 pubmed: 30612407
Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, Liu F, Saunders LM, Mullally A, Abdel-Wahab O, Leung L, Weinstein A, Marubayashi S, Goel A, Gonen M, Estrov Z, Ebert BL, Chiosis G, Nimer SD, Bernstein BE, Verstovsek S, Levine RL (2012) Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature 489(7414):155–159. https://doi.org/10.1038/nature11303
doi: 10.1038/nature11303 pubmed: 22820254 pmcid: 3991463
Borthakur G, Popplewell L, Boyiadzis M, Foran J, Platzbecker U, Vey N, Walter RB, Olin R, Raza A, Giagounidis A, Al-Kali A, Jabbour E, Kadia T, Garcia-Manero G, Bauman JW, Wu Y, Liu Y, Schramek D, Cox DS, Wissel P, Kantarjian H (2016) Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer 122(12):1871–1879. https://doi.org/10.1002/cncr.29986
doi: 10.1002/cncr.29986 pubmed: 26990290
Dholaria B, Radujkovic A, Estrada-Merly N, Sirait T, Kim S, Hernandez-Boluda JC, Czerw T, Hayden PJ, Kansagra A, Ho VT, Nishihori T, Shaughnessy P, Scott B, Nakamura R, Oran B, Kharfan-Dabaja M, Savani BN, McLornan D, Yakoub-Agha I, Saber W (2022) Outcomes of allogeneic haematopoietic cell transplantation for chronic neutrophilic leukaemia: a combined CIBMTR/CMWP of EBMT analysis. Br J Haematol 198(4):785–789. https://doi.org/10.1111/bjh.18297
doi: 10.1111/bjh.18297 pubmed: 35658101 pmcid: 9750039

Auteurs

Jiapei Gao (J)

Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China.

Shuai Han (S)

Yangzhou University Medical College, Yangzhou, Jiangsu Province, China.

Bin Deng (B)

Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China.

Yifan Deng (Y)

Yangzhou University Medical College, Yangzhou, Jiangsu Province, China.

Xiaohui Gao (X)

Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China. hmilygxh@163.com.

Classifications MeSH