Tracking of Stem Cells in Chronic Liver Diseases: Current Trends and Developments.

Cell-tracking technology Chronic liver diseases Stem cell therapy Stem cell-tracking

Journal

Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767

Informations de publication

Date de publication:
22 Nov 2023
Historique:
accepted: 15 11 2023
medline: 23 11 2023
pubmed: 23 11 2023
entrez: 22 11 2023
Statut: aheadofprint

Résumé

Stem cell therapy holds great promise for future clinical practice for treatment of advanced liver diseases. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, has not been fully elucidated. Herein, recent advances regarding the imaging tools for stem cells tracking mainly in chronic liver diseases with the advantages and disadvantages of each approach have been described. Magnetic resonance imaging is a promising clinical imaging modality due to non-radioactivity, excellent penetrability, and high spatial resolution. Fluorescence imaging and radionuclide imaging demonstrate relatively increased sensitivity, with the latter excelling in real-time monitoring. Reporter genes specialize in long-term tracing. Nevertheless, the disadvantages of low sensitivity, radiation, exogenous gene risk are inevitably present in each of these means, respectively. In this review, we aim to comprehensively evaluate the current state of methods for tracking of stem cell, highlighting their strengths and weaknesses, and providing insights into their future potential. Multimodality imaging strategies may overcome the inherent limitations of single-modality imaging by combining the strengths of different imaging techniques to provide more comprehensive information in the clinical setting.

Identifiants

pubmed: 37993759
doi: 10.1007/s12015-023-10659-2
pii: 10.1007/s12015-023-10659-2
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China
ID : 82172254
Organisme : National Key Research and Development Program of China
ID : 2022YFC2303700
Organisme : National Key Research and Development Program of China
ID : 2022YFC2304800

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Huang, D. Q., Mathurin, P., Cortez-Pinto, H., et al. (2023). Global epidemiology of alcohol-associated Cirrhosis and HCC: Trends, projections and risk factors. Nature Reviews Gastroenterology & Hepatology, 20(1), 37–49. https://doi.org/10.1038/s41575-022-00688-6
doi: 10.1038/s41575-022-00688-6
Huang, D. Q., Terrault, N. A., Tacke, F., et al. (2023). Global epidemiology of Cirrhosis - aetiology, trends and predictions. Nature Reviews Gastroenterology & Hepatology, 20(6), 388–398. https://doi.org/10.1038/s41575-023-00759-2
doi: 10.1038/s41575-023-00759-2
Adams, C., Israel, L. L., Ostrovsky, S., et al. (2016). Development of multifunctional magnetic nanoparticles for genetic Engineering and Tracking of neural stem cells. Advance Healthcare Materials, 5(7), 841–849. https://doi.org/10.1002/adhm.201500885
doi: 10.1002/adhm.201500885
Wang, S., Li, K., Pickholz, E., et al. (2023). An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Science Translational Medicine, 15(677). https://doi.org/10.1126/scitranslmed.add3949
doi: 10.1126/scitranslmed.add3949 pubmed: 36599008
Vangijzegem, T., Lecomte, V., Ternad, I., et al. (2023). Superparamagnetic Iron Oxide nanoparticles (SPION): From fundamentals to State-of-the-art innovative applications for Cancer Therapy. Pharmaceutics, 15(1). https://doi.org/10.3390/pharmaceutics15010236
doi: 10.3390/pharmaceutics15010236 pubmed: 36678868 pmcid: 9861355
Bos, C., Delmas, Y., Desmouliere, A., et al. (2004). In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 233(3), 781–789. https://doi.org/10.1148/radiol.2333031714
doi: 10.1148/radiol.2333031714 pubmed: 15486216
Ju, S., Teng, G. J., Lu, H., et al. (2007). In vivo MR tracking of mesenchymal stem cells in rat liver after intrasplenic transplantation. Radiology, 245(1), 206–215. https://doi.org/10.1148/radiol.2443061290
doi: 10.1148/radiol.2443061290 pubmed: 17717324
Wang, Q., Li, K., Quan, Q., et al. (2014). R2* and R2 mapping for quantifying recruitment of superparamagnetic iron oxide-tagged endothelial progenitor cells to injured liver: Tracking in vitro and in vivo. International Journal of Nanomedicine, 9, 1815–1822. https://doi.org/10.2147/IJN.S58269
doi: 10.2147/IJN.S58269 pubmed: 24748791 pmcid: 3990372
Zhou, B., Shan, H., Li, D., et al. (2010). MR tracking of magnetically labeled mesenchymal stem cells in rats with liver fibrosis. Magnetic Resonance Imaging, 28(3), 394–399. https://doi.org/10.1016/j.mri.2009.12.005
doi: 10.1016/j.mri.2009.12.005 pubmed: 20096523
Choi, D., Kim, J. H., Lim, M., et al. (2008). Hepatocyte-like cells from human mesenchymal stem cells engrafted in regenerating rat liver tracked with in vivo magnetic resonance imaging. Tissue Engineering. Part C, Methods, 14(1), 15–23. https://doi.org/10.1089/tec.2007.0329
doi: 10.1089/tec.2007.0329 pubmed: 18454642
Cai, J., Zhang, X., Wang, X., et al. (2008). In vivo MR imaging of magnetically labeled mesenchymal stem cells transplanted into rat liver through hepatic arterial injection. Contrast Media and Molecular Imaging, 3(2), 61–66. https://doi.org/10.1002/cmmi.231
doi: 10.1002/cmmi.231 pubmed: 18381616
Zhou, B., Li, D., Qian, J., et al. (2015). MR tracking of SPIO-labeled mesenchymal stem cells in rats with liver fibrosis could not monitor the cells accurately. Contrast Media and Molecular Imaging, 10(6), 473–480. https://doi.org/10.1002/cmmi.1650
doi: 10.1002/cmmi.1650 pubmed: 26153152
Farrell, E., Wielopolski, P., Pavljasevic, P., et al. (2008). Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochemical and Biophysical Research Communications, 369(4), 1076–1081. https://doi.org/10.1016/j.bbrc.2008.02.159
doi: 10.1016/j.bbrc.2008.02.159 pubmed: 18336785
Kostura, L., Kraitchman, D. L., Mackay, A. M., et al. (2004). Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. Nmr in Biomedicine, 17(7), 513–517. https://doi.org/10.1002/nbm.925
doi: 10.1002/nbm.925 pubmed: 15526348
Detante, O., Valable, S., de Fraipont, F., et al. (2012). Magnetic resonance imaging and fluorescence labeling of clinical-grade mesenchymal stem cells without impacting their phenotype: Study in a rat model of Stroke. Stem Cells Translational Medicine, 1(4), 333–341. https://doi.org/10.5966/sctm.2011-0043
doi: 10.5966/sctm.2011-0043 pubmed: 23197812 pmcid: 3659696
Hsiao, J. K., Tai, M. F., Chu, H. H., et al. (2007). Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: Cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magnetic Resonance in Medicine, 58(4), 717–724. https://doi.org/10.1002/mrm.21377
doi: 10.1002/mrm.21377 pubmed: 17899592
Zheng, B., von See, M. P., Yu, E., et al. (2016). Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics, 6(3), 291–301. https://doi.org/10.7150/thno.13728
doi: 10.7150/thno.13728 pubmed: 26909106 pmcid: 4737718
Parish, C. R. (1999). Fluorescent dyes for lymphocyte migration and proliferation studies. Immunology and Cell Biology, 77(6), 499–508. https://doi.org/10.1046/j.1440-1711.1999.00877.x
doi: 10.1046/j.1440-1711.1999.00877.x pubmed: 10571670
Li, P., Zhang, R., Sun, H., et al. (2013). PKH26 can transfer to host cells in vitro and vivo. Stem Cells and Development, 22(2), 340–344. https://doi.org/10.1089/scd.2012.0357
doi: 10.1089/scd.2012.0357 pubmed: 22913652
Horan, P. K., & Slezak, S. E. (1989). Stable cell membrane labelling. Nature, 340(6229), 167–168. https://doi.org/10.1038/340167a0
doi: 10.1038/340167a0 pubmed: 2662017
Isbambetov, A., Baimakhanov, Z., Soyama, A., et al. (2016). Equal distribution of mesenchymal stem cells after hepatic ischemia-reperfusion injury. Journal of Surgical Research, 203(2), 360–367. https://doi.org/10.1016/j.jss.2016.03.057
doi: 10.1016/j.jss.2016.03.057 pubmed: 27363644
Chen, Z., Kuang, Q., Lao, X. J., et al. (2016). Differentiation of UC-MSCs into hepatocyte-like cells in partially hepatectomized model rats. Experimental and Therapeutic Medicine, 12(3), 1775–1779. https://doi.org/10.3892/etm.2016.3543
doi: 10.3892/etm.2016.3543 pubmed: 27602090 pmcid: 4998204
Shams, S., Mohsin, S., Nasir, G. A., et al. (2015). Mesenchymal stem cells pretreated with HGF and FGF4 can reduce liver fibrosis in mice. Stem Cells Int, 2015,. https://doi.org/10.1155/2015/747245
doi: 10.1155/2015/747245 pubmed: 25685159 pmcid: 4320872
Pascual-Miguelanez, I., Salinas-Gomez, J., Fernandez-Luengas, D., et al. (2015). Systemic treatment of acute Liver Failure with adipose derived stem cells. Journal of Investigative Surgery, 28(2), 120–126. https://doi.org/10.3109/08941939.2014.987407
doi: 10.3109/08941939.2014.987407 pubmed: 25517764
Li, T., Zhu, J., Ma, K., et al. (2013). Autologous bone marrow-derived mesenchymal stem cell transplantation promotes liver regeneration after portal vein embolization in cirrhotic rats. Journal of Surgical Research, 184(2), 1161–1173. https://doi.org/10.1016/j.jss.2013.04.054
doi: 10.1016/j.jss.2013.04.054 pubmed: 23809154
Shizhu, J., Xiangwei, M., Xun, S., et al. (2012). Bone marrow mononuclear cell transplant therapy in mice with CCl4-induced acute Liver Failure. The Turkish Journal of Gastroenterology : The Official Journal of Turkish Society of Gastroenterology, 23(4), 344–352. https://doi.org/10.4318/tjg.2012.0344
doi: 10.4318/tjg.2012.0344 pubmed: 22965505
Jin, S. Z., Liu, B. R., Xu, J., et al. (2012). Ex vivo-expanded bone marrow stem cells home to the liver and ameliorate functional recovery in a mouse model of acute hepatic injury. Hepatobiliary & Pancreatic Diseases International, 11(1), 66–73. https://doi.org/10.1016/s1499-3872(11)60127-6
doi: 10.1016/s1499-3872(11)60127-6
Cen, P. P., Fan, L. X., Wang, J., et al. (2019). Therapeutic potential of menstrual blood stem cells in treating acute Liver Failure. World Journal of Gastroenterology, 25(41), 6190–6204. https://doi.org/10.3748/wjg.v25.i41.6190
doi: 10.3748/wjg.v25.i41.6190 pubmed: 31745380 pmcid: 6848012
Lan, L., Liu, R., Qin, L. Y., et al. (2018). Transplantation of bone marrow-derived endothelial progenitor cells and hepatocyte stem cells from liver fibrosis rats ameliorates liver fibrosis. World Journal of Gastroenterology, 24(2), 237–247. https://doi.org/10.3748/wjg.v24.i2.237
doi: 10.3748/wjg.v24.i2.237 pubmed: 29375209 pmcid: 5768942
Xiao Ling, K., Peng, L., Jian Feng, Z., et al. (2016). Stromal derived Factor-1/CXCR4 Axis involved in bone marrow mesenchymal stem cells recruitment to injured liver. Stem Cells Int, 2016,. https://doi.org/10.1155/2016/8906945
doi: 10.1155/2016/8906945 pubmed: 26880995 pmcid: 4737461
Ruan, G. P., Yao, X., Liu, J. F., et al. (2016). Establishing a tree shrew model of systemic Lupus Erythematosus and cell transplantation treatment. Stem Cell Research & Therapy, 7(1), 121. https://doi.org/10.1186/s13287-016-0385-1
doi: 10.1186/s13287-016-0385-1
Ezzat, T., Dhar, D. K., Malago, M., et al. (2012). Dynamic tracking of stem cells in an acute Liver Failure model. World Journal of Gastroenterology, 18(6), 507–516. https://doi.org/10.3748/wjg.v18.i6.507
doi: 10.3748/wjg.v18.i6.507 pubmed: 22363116 pmcid: 3280395
Sun, S., Chen, G., Xu, M., et al. (2013). Differentiation and migration of bone marrow mesenchymal stem cells transplanted through the spleen in rats with portal Hypertension. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0083523
doi: 10.1371/journal.pone.0083523 pubmed: 24340101 pmcid: 3858351
Li, D. (2015). Therapeutic effect comparison of hepatocyte-like cells and bone marrow mesenchymal stem cells in acute Liver Failure of rats. International Journal of Clinical and Experimental Pathology, 8(1), 11–24.
pubmed: 25755689 pmcid: 4348921
Zhu, W., Shi, X. L., Xiao, J. Q., et al. (2013). Effects of xenogeneic adipose-derived stem cell transplantation on acute-on-chronic Liver Failure. Hepatobiliary & Pancreatic Diseases International, 12(1), 60–67. https://doi.org/10.1016/s1499-3872(13)60007-7
doi: 10.1016/s1499-3872(13)60007-7
Chang, H. M., Liao, Y. W., Chiang, C. H., et al. (2012). Improvement of carbon tetrachloride-induced acute hepatic failure by transplantation of induced pluripotent stem cells without reprogramming factor c-Myc. International Journal of Molecular Sciences, 13(3), 3598–3617. https://doi.org/10.3390/ijms13033598
doi: 10.3390/ijms13033598 pubmed: 22489170 pmcid: 3317730
Stennett, E. M., Ciuba, M. A., & Levitus, M. (2014). Photophysical processes in single molecule organic fluorescent probes. Chemical Society Reviews, 43(4), 1057–1075. https://doi.org/10.1039/c3cs60211g
doi: 10.1039/c3cs60211g pubmed: 24141280
de Almeida, P. E., van Rappard, J. R., & Wu, J. C. (2011). In vivo bioluminescence for tracking cell fate and function. American Journal of Physiology Heart and Circulatory Physiology, 301(3), H663–H671. https://doi.org/10.1152/ajpheart.00337.2011
doi: 10.1152/ajpheart.00337.2011 pubmed: 21666118 pmcid: 3191083
Xie, P., Hu, X., Li, D., et al. (2019). Bioluminescence Imaging of transplanted mesenchymal stem cells by overexpression of hepatocyte nuclear Factor4alpha: Tracking biodistribution and survival. Molecular Imaging and Biology : Mib : The Official Publication of the Academy of Molecular Imaging, 21(1), 44–53. https://doi.org/10.1007/s11307-018-1204-0
doi: 10.1007/s11307-018-1204-0
Rabinovich, B. A., Ye, Y., Etto, T., et al. (2008). Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proceeding of the National Academy of Sciences U S A, 105(38), 14342–14346. https://doi.org/10.1073/pnas.0804105105
doi: 10.1073/pnas.0804105105
Wang, K., Li, Y., Zhu, T., et al. (2017). Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute Liver Failure. Stem Cell Research & Therapy, 8(1), 162. https://doi.org/10.1186/s13287-017-0614-2
doi: 10.1186/s13287-017-0614-2
Knoop, K., Schwenk, N., Schmohl, K., et al. (2015). Mesenchymal stem cell-mediated, Tumor stroma-targeted radioiodine therapy of metastatic colon Cancer using the sodium iodide symporter as theranostic gene. Journal of Nuclear Medicine, 56(4), 600–606. https://doi.org/10.2967/jnumed.114.146662
doi: 10.2967/jnumed.114.146662 pubmed: 25745085
Niess, H., Bao, Q., Conrad, C., et al. (2011). Selective targeting of genetically engineered mesenchymal stem cells to Tumor stroma microenvironments using tissue-specific Suicide gene expression suppresses growth of hepatocellular carcinoma. Annals of Surgery, 254(5), 767–774. https://doi.org/10.1097/SLA.0b013e3182368c4f . discussion 774-5.
doi: 10.1097/SLA.0b013e3182368c4f pubmed: 22042469
Gambhir, S. S., Bauer, E., Black, M. E., et al. (2000). A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proceeding of the National Academy of Sciences U S A, 97(6), 2785–2790. https://doi.org/10.1073/pnas.97.6.2785
doi: 10.1073/pnas.97.6.2785
Lin, S., Xie, X., Patel, M. R., et al. (2007). Quantum dot imaging for embryonic stem cells. Bmc Biotechnology, 7,. https://doi.org/10.1186/1472-6750-7-67
doi: 10.1186/1472-6750-7-67 pubmed: 17925032 pmcid: 2174930
Sugiyama, T., Kuroda, S., Osanai, T., et al. (2011). Near-infrared fluorescence labeling allows noninvasive tracking of bone marrow stromal cells transplanted into rat infarct brain. Neurosurgery, 68(4), 1036–1047. https://doi.org/10.1227/NEU.0b013e318208f891 . discussion 1047.
doi: 10.1227/NEU.0b013e318208f891 pubmed: 21221028
Yukawa, H., & Baba, Y. (2017). In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Analytical Chemistry, 89(5), 2671–2681. https://doi.org/10.1021/acs.analchem.6b04763
doi: 10.1021/acs.analchem.6b04763 pubmed: 28194939
Chen, G,. Lin ,S., Huang, D., et al. (2018). Revealing the Fate of transplanted stem cells in vivo with a novel optical imaging strategy. Small, 14(3). https://doi.org/10.1002/smll.201702679
Cheng, L., Wang, C., Ma, X., et al. (2013). Multifunctional Upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Advanced Functional Materials, 23(3), 272–280. https://doi.org/10.1002/adfm.201201733
doi: 10.1002/adfm.201201733
Dhada, K. S., Hernandez, D. S., & Suggs, L. J. (2019). In vivo photoacoustic tracking of mesenchymal stem cell viability. ACS Nano, 13(7), 7791–7799. https://doi.org/10.1021/acsnano.9b01802
doi: 10.1021/acsnano.9b01802 pubmed: 31250647 pmcid: 7155740
Kubelick, K. P., & Emelianov, S. Y. (2020). A trimodal ultrasound, photoacoustic and magnetic resonance imaging approach for longitudinal post-operative monitoring of stem cells in the spinal cord. Ultrasound in Medicine and Biology, 46(12), 3468–3474. https://doi.org/10.1016/j.ultrasmedbio.2020.08.026
doi: 10.1016/j.ultrasmedbio.2020.08.026 pubmed: 32988671
Qi, S., Zhang, P., Ma, M., et al. (2019). Cellular Internalization-induced aggregation of porous silicon nanoparticles for ultrasound imaging and protein-mediated protection of stem cells. Small (Weinheim An Der Bergstrasse, Germany), 15(1), e1804332. https://doi.org/10.1002/smll.201804332
doi: 10.1002/smll.201804332 pubmed: 30488562
Kubelick, K. P., Snider, E. J., Ethier, C. R., et al. (2019). Development of a stem cell tracking platform for ophthalmic applications using ultrasound and photoacoustic imaging. Theranostics, 9(13), 3812–3824. https://doi.org/10.7150/thno.32546
doi: 10.7150/thno.32546 pubmed: 31281515 pmcid: 6587354
Cen, P., Chen, J., Hu, C., et al. (2016). Noninvasive in-vivo tracing and imaging of transplanted stem cells for liver regeneration. Stem Cell Research & Therapy, 7(1), 143. https://doi.org/10.1186/s13287-016-0396-y
doi: 10.1186/s13287-016-0396-y
Kircher, M. F., Gambhir, S. S., & Grimm, J. (2011). Noninvasive cell-tracking methods. Nature Reviews Clinical Oncology, 8(11), 677–688. https://doi.org/10.1038/nrclinonc.2011.141
doi: 10.1038/nrclinonc.2011.141 pubmed: 21946842

Auteurs

Jin-Long He (JL)

West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China.

Yi-Xian You (YX)

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.

Xiong Pei (X)

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.

Wei Jiang (W)

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.

Qing-Min Zeng (QM)

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.

Bin Chen (B)

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.

Yong-Hong Wang (YH)

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.

En-Qiang Chen (EQ)

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.

Hong Tang (H)

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.

Xiu-Feng Gao (XF)

West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China. xiufengg@163.com.

Dong-Bo Wu (DB)

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China. dongbohuaxi@163.com.

Classifications MeSH