Improved cardioprotective effect of 3-nitro-N-methyl salicylamide solution after a prolonged preservation time of rat heart.

3-NNMS heart preservation solution mitochondrial inhibitor myocardial ischaemia-reperfusion injury oxidative stress

Journal

Clinical and experimental pharmacology & physiology
ISSN: 1440-1681
Titre abrégé: Clin Exp Pharmacol Physiol
Pays: Australia
ID NLM: 0425076

Informations de publication

Date de publication:
23 Nov 2023
Historique:
revised: 24 10 2023
received: 30 08 2023
accepted: 03 11 2023
medline: 23 11 2023
pubmed: 23 11 2023
entrez: 23 11 2023
Statut: aheadofprint

Résumé

Ischemic reperfusion injury, caused by oxidative stress during reperfusion, is an inevitable outcome of organ transplantation, especially when the organ preservation time is prolonged. Prolonged ischaemic preservation is a valuable technique for improving the success of organ transplantation, but numerous challenges remain. 3-nitro-N-methyl salicylamide (3-NNMS), an inhibitor of mitochondrial electron transport chain complex III, can be used to reduce reactive oxygen species production during blood reperfusion by slowing the electron flow rate of the respiratory chain. Based on this property, a novel preservation solution was developed for the preservation of isolated rat heart and its cardioprotective effect was investigated during an 8-h cold ischaemia preservation time for the first time. For comparison, 3-NNMS was also included in the histidine-tryptophan-ketoglutarate (HTK) solution. Compared to HTK, HTK supplemented with 3-NNMS significantly improved the heart rate of isolated rat hearts after 8 h of cold storage. Both 3-NNMS solution and HTK supplemented with 3-NNMS solution decreased cardiac troponin T and lactate dehydrogenase levels in perfusion fluid and reduced reactive oxygen species and malondialdehyde levels in the myocardium. The 3-NNMS also maintained the membrane potential of myocardial mitochondria and significantly increased superoxide dismutase levels. These results showed that the new 3-NNMS solution can protect mitochondrial and cardiomyocyte function by increasing antioxidant capacity and reducing oxidative stress in cryopreserved rat hearts during a prolonged preservation time, resulting in less myocardial injury and better heart rate.

Identifiants

pubmed: 37994166
doi: 10.1111/1440-1681.13835
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China
ID : 31971100

Informations de copyright

© 2023 John Wiley & Sons Australia, Ltd.

Références

Colvin M, Smith JM, Ahn Y, et al. OPTN/SRTR 2020 annual data report: heart. Am J Transplant. 2022;22(Suppl 2):350-437.
Guglin M, Zucker MJ, Borlaug BA, et al. Evaluation for heart transplantation and LVAD implantation: JACC council perspectives. J Am Coll Cardiol. 2020;75(12):1471-1487.
Que W, Hu X, Fujino M, et al. Prolonged cold ischaemia time in mouse heart transplantation using supercooling preservation. Transplantation. 2020;104(9):1879-1889.
Goldfarb SB, Levvey BJ, Cherikh WS, et al. Registry of the International Society for Heart and Lung Transplantation: twentieth pediatric lung and heart-lung transplantation Report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1070-1079.
Bretschneider HJ. Myocardial protection. Thorac Cardiovasc Surg. 1980;28(5):295-302.
Minami K, Omoto T, Böthig D, et al. Creatine kinase and troponin after myocardial preservation using HTK solution (Custoidol) for clinical heart transplantation. J Heart Lung Transplant. 2003;22(2):192-194.
Cadenas S. ROS and redox signaling in myocardial ischaemia-reperfusion injury and cardiopro tection. Free Radic Biol Med. 2018;117:76-89.
Zhou T, Prather ER, Garrison DE, Zuo L. Interplay between ROS and antioxidants during ischaemia-reperfusion injuries in cardiac and skeletal muscle. Int J Mol Sci. 2018;19(2):417.
Wallert M, Ziegler M, Wang X, et al. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischaemia/reperfusion injury. Redox Biol. 2019;26:101292.
Zheng J, Chen L, Lu T, et al. MSCs ameliorate hepatocellular apoptosis mediated by PINK1-dependent mitophagy in liver ischaemia/reperfusion injury through AMPKα activation. Cell Death Dis. 2020;11(4):256.
Ikeda G, Matoba T, Ishikita A, et al. Nanoparticle-mediated simultaneous targeting of mitochondrial injury and inflammation attenuates myocardial is-chemia-reperfusion injury. J Am Heart Assoc. 2021;10(12):e019521.
Li S, Lei Z, Yang X, et al. Propofol protects myocardium from ischaemia/reperfusion injury by inhibiting ferroptosis through the AKT/p53 signaling pathway. Front Pharmacol. 2022;13:841410.
Lin JH, Yang KT, Lee WS, et al. Xanthohumol protects the rat myocardium against ischaemia/reperfusion injury-induced ferroptosis. Oxid Med Cell Longev. 2022;2022:9523491.
Yi C, Song M, Sun L, et al. Asiatic acid alleviates myocardial ischaemia-reperfusion injury by inhibiting the ROS-mediated mitochondria-dependent apoptosis pathway. Oxid Med Cell Longev. 2022;2022:3267450.
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int J Mol Med. 2019;44(1):3-15.
Eykyn TR, Aksentijević D, Aughton KL, Southworth R, Fuller W, Shattock MJ. Multiple quantum filtered (23)Na NMR in the Langendorff perfused mouse heart: ratio of tri-ple/double quantum filtered signals correlates with [Na]i. J Mol Cell Cardiol. 2015;86:95-101.
Chen GG, Yan JB, Wang XM, et al. Mechanism of uncoupling protein 2-mediated myocardial injury in hypothermic preserved rat hearts. Mol Med Rep. 2016;14(2):1857-1864.
Pallag G, Nazarian S, Ravasz D, et al. Proline oxidation supports mitochondrial ATP production when complex I is inhibited. Int J Mol Sci. 2022;23(9):5111.
Li W, Li W, Leng Y, Xiong Y, Xia Z. Ferroptosis is involved in diabetes myocardial ischaemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 2020;39(2):210-225.
Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR. Mitochondrial redox regulation and myocardial ischaemia-reperfusion injury. Am J Physiol Cell Physiol. 2022;322(1):C12-C23.
Hess NR, Ziegler LA, Kaczorowski DJ. Heart donation and preservation: historical perspectives, current technologies, and future directions. J Clin Med. 2022;11(19):5762.
Jing L, Yao L, Zhao M, Peng LP, Liu M. Organ preservation: from the past to the future. Acta Pharmacol Sin. 2018;39(5):845-857.
Moers C, Leuvenink HGD. Changing the organ preservation game. Transplantation. 2020;104(5):895-896.
Kuzmiak-Glancy S, Glancy B, Kay MW. Ischemic damage to every segment of the oxidative phosphorylation cascade elevates ETC driving force and ROS production in cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2022;323(3):H499-H512.
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 2016;100:14-31.
Szabó G, Loganathan S, Korkmaz-Icöz S, et al. Improvement of left ventricular graft function using an iron-chelator-supplemented Bretschneider solution in a canine model of orthotopic heart transplantation. Int J Mol Sci. 2022;23(13):7453.
Dare AJ, Logan A, Prime TA, et al. The mitochondria-targeted anti-oxidant MitoQ decreases ischaemia-reperfusion injury in a murine syngeneic heart transplant model. J Heart Lung Transplant. 2015;34(11):1471-1480.
Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273(29):18092-18098.
Braik A, Lahouel M, Merabet R, Djebar MR, Morin D. Myocardial protection by propolis during prolonged hypothermic preservation. Cryobiology. 2019;88:29-37.
Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674.
Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128(9):3716-3726.
Pan HZ, Zhang LJ, Liu YW, et al. Cold-inducible RNA binding protein agonist enhances the cardioprotective effect of UW solution during extended heart preserva-tion. Artif Organs. 2020;44(10):E406-E418.
Zabielska-Kaczorowska MA, Smolenski RT. Nucleotide metabolism during experimental preservation for transplantation with Transmedium transplant fluid (TTF) in comparison to histidine-tryptophan-Ketoglutarate (HTK). Nucleosides Nucleotides Nucleic Acids. 2022;41(12):1386-1395.
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524-551.
Zhao C, Yang Y, An Y, Yang B, Li P. Cardioprotective role of phyllanthin against myocardial ischaemia-reperfusion injury by alleviating oxidative stress and inflammation with in-creased adenosine triphosphate levels in the mice model. Environ Toxicol. 2020;36(1):33-44.
Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischaemia-reperfusion injury. Acta Pharm Sin B. 2020;10(10):1866-1879.
Moens AL, Claeys MJ, Timmermans JP, Vrints CJ. Myocardial ischaemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol. 2005;100(2):179-190.
Stoian L, Krüger M, Schmitt J, Kleinbongard P. Is there an effect of ischemic conditioning on myocardial contractile function following acute myocardial ischaemia/reperfusion injury? Biochim Biophys Acta Mol Basis Dis. 2019;1865(4):822-830.
Gunata M, Parlakpinar H. A review of myocardial ischaemia/reperfusion injury: pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment. Cell Biochem Funct. 2021;39(2):190-217.
Xiang M, Lu Y, Xin L, et al. Role of oxidative stress in reperfusion following myocardial ischaemia and its treatments. Oxid Med Cell Longev. 2021;2021:6614009.
Bland AR, Payne FM, Ashton JC, Jamialahmadi T, Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol Res. 2022;175:105986.

Auteurs

Shuo Wang (S)

Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China.

Wenjun Liu (W)

School of Graduate, Harbin Sport University, Harbin, China.

Shan Liu (S)

Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China.
Guiyang Healthcare Vocational University, Guiyang, China.

Jiacong Li (J)

Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China.

Yi Geng (Y)

Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China.

Yungang Zhao (Y)

Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China.

Classifications MeSH