Phase Ib study of sabatolimab (MBG453), a novel immunotherapy targeting TIM-3 antibody, in combination with decitabine or azacitidine in high- or very high-risk myelodysplastic syndromes.


Journal

American journal of hematology
ISSN: 1096-8652
Titre abrégé: Am J Hematol
Pays: United States
ID NLM: 7610369

Informations de publication

Date de publication:
22 Nov 2023
Historique:
revised: 13 10 2023
received: 12 09 2023
accepted: 02 11 2023
medline: 23 11 2023
pubmed: 23 11 2023
entrez: 23 11 2023
Statut: aheadofprint

Résumé

The safety and efficacy of sabatolimab, a novel immunotherapy targeting T-cell immunoglobulin domain and mucin domain-3 (TIM-3), was assessed in combination with hypomethylating agents (HMAs) in patients with HMA-naive revised International Prognostic System Score (IPSS-R) high- or very high-risk myelodysplastic syndromes (HR/vHR-MDS) or chronic myelomonocytic leukemia (CMML). Sabatolimab + HMA had a safety profile similar to that reported for HMA alone and demonstrated durable clinical responses in patients with HR/vHR-MDS. These results support the ongoing evaluation of sabatolimab-based combination therapy in MDS, CMML, and acute myeloid leukemia.

Identifiants

pubmed: 37994196
doi: 10.1002/ajh.27161
doi:

Types de publication

Letter

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Novartis Pharmaceuticals Corporation

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Uy N, Singh A, Gore SD, Prebet T. Hypomethylating agents (HMA) treatment for myelodysplastic syndromes: alternatives in the frontline and relapse settings. Expert Opin Pharmacother. 2017;18(12):1213-1224.
Yakoub-Agha I, Deeg J. Are hypomethylating agents replacing induction-type chemotherapy before allogeneic stem cell transplantation in patients with myelodysplastic syndrome? Biol Blood Marrow Transplant. 2014;20(12):1885-1890.
Prébet T, Gore SD, Esterni B, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011;29(24):3322-3327.
Patnaik MM, Tefferi A. Chronic Myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95(1):97-115.
Sekeres MA, Taylor J. Diagnosis and treatment of myelodysplastic syndromes: a review. Jama. 2022;328(9):872-880.
Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794-1803.
Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223-232.
Itzykson R, Fenaux P, Bowen D, et al. Diagnosis and treatment of chronic myelomonocytic leukemias in adults: recommendations from the European Hematology Association and the European LeukemiaNet. Hemasphere. 2018;2(6):e150.
Coston T, Pophali P, Vallapureddy R, et al. Suboptimal response rates to hypomethylating agent therapy in chronic myelomonocytic leukemia; a single institutional study of 121 patients. Am J Hematol. 2019;94(7):767-779.
Monney L, Sabatos CA, Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415(6871):536-541.
Acharya N, Sabatos-Peyton C, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020;8(1):e000911.
Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020;20(3):173-185.
Jan M, Chao MP, Cha AC, et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci U S A. 2011;108(12):5009-5014.
Kikushige Y, Shima T, Takayanagi S, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010;7(6):708-717.
Kikushige Y, Miyamoto T, Yuda J, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell. 2015;17(3):341-352.
Haubner S, Perna F, Köhnke T, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33(1):64-74.
Asayama T, Tamura H, Ishibashi M, et al. Functional expression of Tim-3 on blasts and clinical impact of its ligand galectin-9 in myelodysplastic syndromes. Oncotarget. 2017;8(51):88904-88917.
Dixon KO, Tabaka M, Schramm MA, et al. TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature. 2021;595(7865):101-106.
Sabatos-Peyton C, Longmire T, Baker L, et al. 439 Dual modes of action for anti-TIM-3 antibody MBG453 in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML): preclinical evidence for immune-mediated and anti-leukemic activity. J Immunother Cancer. 2020;8(Suppl 3):A267.
Schwartz S, Patel N, Longmire T, et al. Characterization of sabatolimab, a novel immunotherapy with immuno-myeloid activity directed against TIM-3 receptor. Immunother Adv. 2022;2(1):ltac019.
Wei AH, Esteve J, Porkka K, et al. Sabatolimab (MBG453) dose selection and dose-response analysis in myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML): population pharmacokinetics (PK) modeling and evaluation of clinical efficacy/safety by dose. Blood. 2020;136:40-42.
Xu S, Zhang N, Rinne ML, Sun H, Stein AM. Sabatolimab (MBG453) model-informed drug development for dose selection in patients with myelodysplastic syndrome/acute myeloid leukemia and solid tumors. CPT Pharmacometrics Syst Pharmacol. 2023.
Curigliano G, Gelderblom H, Mach N, et al. Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors. Clin Cancer Res. 2021;27(13):3620-3629.
Brunner AM, Esteve J, Porkka K, et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study. Blood. 2021;138(Suppl 1):244.
Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447.
Platzbecker U, Kubasch AS, Homer-Bouthiette C, Prebet T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia. 2021;35(8):2182-2198.
Steensma DP. Myelodysplastic syndromes: diagnosis and treatment. Mayo Clin Proc. 2015;90(7):969-983.
Niscola P, Palombi M, Trawinska MM, et al. Managing myelodysplastic syndromes in very old patients: a teaching case report. Clin Interv Aging. 2013;8:391-394.
Sallman DA, Al Malki MM, Asch AS, et al. Magrolimab in combination with azacitidine for patients with untreated higher-risk myelodysplastic syndromes (HR MDS): 5F9005 phase 1B study results. EHA 2022; June 9-17, 2022; Vienna, Austria.
Myers G. Immune-related adverse events of immune checkpoint inhibitors: a brief review. Curr Oncol. 2018;25(5):342-347.
Mach N, Curigliano G, Santoro A, et al. Phase (Ph) II study of MBG453 + spartalizumab in patients (pts) with non-small cell lung cancer (NSCLC) and melanoma pretreated with anti-PD-1/L1 therapy. Ann Oncol. 2019;30:v491-v492.
Zeidan AM, Ando K, Rauzy O, et al. Primary results of stimulus-MDS1: a randomized, double-blind, placebo-controlled phase II study of TIM-3 inhibition with sabatolimab added to hypomethylating agents (HMAs) in adult patients with higher-risk myelodysplastic syndromes (MDS). Blood. 2022;140(Suppl 1):2063-2065.
Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006;108(2):419-425.

Auteurs

Andrew M Brunner (AM)

Massachusetts General Hospital, Boston, Massachusetts, USA.

Jordi Esteve (J)

Hospital Clínic, Barcelona, Spain.

Kimmo Porkka (K)

Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.

Steve Knapper (S)

School of Medicine, Cardiff University, Cardiff, UK.

Elie Traer (E)

Oregon Health & Science University, Portland, Oregon, USA.

Sebastian Scholl (S)

University Hospital Jena, Jena, Germany.

Guillermo Garcia-Manero (G)

MD Anderson Cancer Center, Houston, Texas, USA.

Norbert Vey (N)

Institut Paoli-Calmettes, Marseille, France.

Martin Wermke (M)

TU Dresden, NCT/UCC Early Clinical Trial Unit, Dresden, Germany.

Jeroen J W M Janssen (JJWM)

Amsterdam University Medical Centers, Amsterdam, The Netherlands.

Rupa Narayan (R)

Massachusetts General Hospital, Boston, Massachusetts, USA.

Shaun Fleming (S)

The Alfred Hospital, Melbourne, Victoria, Australia.

Sun Loo (S)

The Alfred Hospital, Melbourne, Victoria, Australia.

Natalia Tovar (N)

Hospital Clínic, Barcelona, Spain.

Mika Kontro (M)

Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.

Oliver G Ottmann (OG)

School of Medicine, Cardiff University, Cardiff, UK.

Purushotham Naidu (P)

Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA.

Haiying Sun (H)

Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA.

May Han (M)

Cure Ventures, Boston, Massachusetts, USA.

Roisin White (R)

Novartis Ireland Limited, Dublin, Ireland.

Na Zhang (N)

Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA.

Anisa Mohammed (A)

Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA.

Catherine A Sabatos-Peyton (CA)

Larkspur Biosciences, Cambridge, Massachusetts, USA.

David P Steensma (DP)

Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA.

Mikael L Rinne (ML)

Blueprint Medicines, Cambridge, Massachusetts, USA.

Uma M Borate (UM)

Oregon Health & Science University, Portland, Oregon, USA.

Andrew H Wei (AH)

The Peter MacCallum Cancer Centre and Royal Melbourne Hospital Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.

Classifications MeSH