A randomized placebo-controlled trial of nicotinamide riboside in older adults with mild cognitive impairment.

Dementia Geroscience Mild cognitive impairment NAD Nicotinamide riboside Placebo-controlled trial

Journal

GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284

Informations de publication

Date de publication:
23 Nov 2023
Historique:
received: 04 09 2023
accepted: 24 10 2023
medline: 23 11 2023
pubmed: 23 11 2023
entrez: 23 11 2023
Statut: aheadofprint

Résumé

Nicotinamide riboside (NR) increases blood levels of NAD+, a cofactor central to energy metabolism, and improves brain function in some rodent models of neurodegeneration. We conducted a placebo-controlled randomized pilot study with the primary objective of determining safety of NR in older adults with mild cognitive impairment (MCI). Twenty subjects with MCI were randomized to receive placebo or NR using dose escalation to achieve, and maintain, a final dose of 1 g/day over a 10-week study duration. The primary outcome was post-treatment change from baseline measures of cognition (Montreal Cognitive Assessment, MoCA). Predefined secondary outcomes included post-treatment changes in cerebral blood flow (CBF); blood NAD+ levels; and additional neurocognitive, psychometric, and physical performance tests. DNA methylation was assessed in peripheral blood mononuclear cells (PBMCs) as an exploratory outcome. The target NR dose was safely achieved as evidenced by a 2.6-fold increase in blood NAD+ in the NR group (p < 0.001, 95% CI [17.77, 43.49]) with no between-group difference in adverse event reporting. MoCA and other neurocognitive and psychometric metrics remained stable throughout the study. NR reduced CBF in the default mode network (DMN) with greatest differences observed in the left inferior parietal lobe (IPL) (DMN p = 0.013, μ = 0.92, 95% CI [0.23, 1.62]; left IPL p = 0.009, μ = 1.66, 95% CI [0.5, 2.82]). Walking speed in the placebo group significantly improved across the study duration suggestive of a practice effect but did not change in the NR group (p = 0.0402 and p = 0.4698, respectively). Other secondary outcome measures remained stable. Global methylation analyses indicated a modest NR-associated increase in DNA methylation and concomitant reduction in epigenetic age as measured by PhenoAge and GrimAge epigenetic clock analyses. In summary, NR significantly increased blood NAD+ concentrations in older adults with MCI. NR was well tolerated and did not alter cognition. While CBF was reduced by NR treatment, statistical significance would not have withstood multiple comparisons correction. A larger trial of longer duration is needed to determine the potential of NR as a strategy to improve cognition and alter CBF in older adults with MCI. ClinicalTrials.gov NCT02942888.

Identifiants

pubmed: 37994989
doi: 10.1007/s11357-023-00999-9
pii: 10.1007/s11357-023-00999-9
doi:

Banques de données

ClinicalTrials.gov
['NCT02942888']

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NCATS NIH HHS
ID : TL1TR002647
Pays : United States
Organisme : NIA NIH HHS
ID : P30AG044271
Pays : United States

Informations de copyright

© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Petersen RC, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66(12):1447–55.
pubmed: 20008648 pmcid: 3081688 doi: 10.1001/archneurol.2009.266
Roberts RO, et al. The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology. 2008;30(1):58–69.
pubmed: 18259084 pmcid: 2821441 doi: 10.1159/000115751
Busse A, et al. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology. 2006;67(12):2176–85.
pubmed: 17190940 doi: 10.1212/01.wnl.0000249117.23318.e1
Panza F, et al. Current epidemiology of mild cognitive impairment and other predementia syndromes. Am J Geriatr Psychiatry. 2005;13(8):633–44.
pubmed: 16085779 doi: 10.1097/00019442-200508000-00002
Petersen RC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.
pubmed: 10190820 doi: 10.1001/archneur.56.3.303
Bozoki A, et al. Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Arch Neurol. 2001;58(3):411–6.
pubmed: 11255444 doi: 10.1001/archneur.58.3.411
Morris JC, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol. 2001;58(3):397–405.
pubmed: 11255443 doi: 10.1001/archneur.58.3.397
Ritchie K, Artero S, Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology. 2001;56(1):37–42.
pubmed: 11148233 doi: 10.1212/WNL.56.1.37
Daly E, et al. Predicting conversion to Alzheimer disease using standardized clinical information. Arch Neurol. 2000;57(5):675–80.
pubmed: 10815133 doi: 10.1001/archneur.57.5.675
Grober E, et al. Memory impairment on free and cued selective reminding predicts dementia. Neurology. 2000;54(4):827–32.
pubmed: 10690971 doi: 10.1212/WNL.54.4.827
Jicha GA, et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol. 2006;63(5):674–81.
pubmed: 16682537 doi: 10.1001/archneur.63.5.674
2023 Alzheimer's disease facts and figures. Alzheimers Dement. 2023;19(4):1598–1695.
Gonzales MM, et al. Biological aging processes underlying cognitive decline and neurodegenerative disease. J Clin Invest. 2022;132(10).
Tong JJ, et al. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice. Behav Brain Res. 2015;284:138–52.
pubmed: 25698601 doi: 10.1016/j.bbr.2015.01.052
Dunn HC, et al. Restoration of lipoxin A4 signaling reduces Alzheimer’s disease-like pathology in the 3xTg-AD mouse model. J Alzheimers Dis. 2015;43(3):893–903.
pubmed: 25125468 pmcid: 4319708 doi: 10.3233/JAD-141335
Chandra S, Jana M, Pahan K. Aspirin induces lysosomal biogenesis and attenuates amyloid plaque pathology in a mouse model of Alzheimer’s disease via PPARalpha. J Neurosci. 2018;38(30):6682–99.
pubmed: 29967008 pmcid: 6067079 doi: 10.1523/JNEUROSCI.0054-18.2018
Medeiros R, et al. Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol. 2013;182(5):1780–9.
pubmed: 23506847 pmcid: 3644736 doi: 10.1016/j.ajpath.2013.01.051
Caccamo A, et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem. 2010;285(17):13107–20.
pubmed: 20178983 pmcid: 2857107 doi: 10.1074/jbc.M110.100420
Majumder S, et al. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One. 2011;6(9):e25416.
pubmed: 21980451 pmcid: 3182203 doi: 10.1371/journal.pone.0025416
Zhang L, et al. Evaluating the effectiveness of GTM-1, rapamycin, and carbamazepine on autophagy and Alzheimer disease. Med Sci Monit. 2017;23:801–8.
pubmed: 28193995 pmcid: 5321171 doi: 10.12659/MSM.898679
Orr ME, et al. Mammalian target of rapamycin hyperactivity mediates the detrimental effects of a high sucrose diet on Alzheimer’s disease pathology. Neurobiol Aging. 2014;35(6):1233–42.
pubmed: 24411482 doi: 10.1016/j.neurobiolaging.2013.12.006
Musi N, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17(6):e12840.
pubmed: 30126037 pmcid: 6260915 doi: 10.1111/acel.12840
Gonzales MM, et al. A geroscience motivated approach to treat Alzheimer’s disease: senolytics move to clinical trials. Mech Ageing Dev. 2021;200:111589.
pubmed: 34687726 pmcid: 9059898 doi: 10.1016/j.mad.2021.111589
Gonzales MM, et al. Senolytic therapy in mild Alzheimer’s disease: a phase 1 feasibility trial. Nat Med. 2023;29(10):2481–8.
pubmed: 37679434 doi: 10.1038/s41591-023-02543-w
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47.
pubmed: 29514064 pmcid: 6342515 doi: 10.1016/j.cmet.2018.02.011
Ansari HR, Raghava GP. Identification of NAD interacting residues in proteins. BMC Bioinform. 2010;11:160.
doi: 10.1186/1471-2105-11-160
Zhu XH, et al. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci U S A. 2015;112(9):2876–81.
pubmed: 25730862 pmcid: 4352772 doi: 10.1073/pnas.1417921112
Long AN, et al. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 2015;15:19.
pubmed: 25884176 pmcid: 4358858 doi: 10.1186/s12883-015-0272-x
Klaidman LK, et al. Nicotinamide as a precursor for NAD+ prevents apoptosis in the mouse brain induced by tertiary-butylhydroperoxide. Neurosci Lett. 1996;206(1):5–8.
pubmed: 8848280 doi: 10.1016/0304-3940(96)12446-0
Donmez G, et al. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell. 2010;142(2):320–32.
pubmed: 20655472 pmcid: 2911635 doi: 10.1016/j.cell.2010.06.020
Fang EF, et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22(3):401–12.
pubmed: 30742114 pmcid: 6693625 doi: 10.1038/s41593-018-0332-9
Hou Y, et al. NAD(+) supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115(8):E1876–85.
pubmed: 29432159 pmcid: 5828618 doi: 10.1073/pnas.1718819115
Xu XJ, Jiang GS. Niacin-respondent subset of schizophrenia - a therapeutic review. Eur Rev Med Pharmacol Sci. 2015;19(6):988–97.
pubmed: 25855923
Holubiec P, et al. Pathophysiology and clinical management of pellagra - a review. Folia Med Cracov. 2021;61(3):125–37.
pubmed: 34882669
Mero A, et al. Effects of nicotinamide adenine dinucleotide hydride on physical and mental performance. J Sports Sci. 2008;26(3):311–9.
pubmed: 18074300 doi: 10.1080/02640410701474200
Arenas-Jal M, et al. Trends in the food and sports nutrition industry: a review. Crit Rev Food Sci Nutr. 2020;60(14):2405–21.
pubmed: 31352832 doi: 10.1080/10408398.2019.1643287
DS W, et al. Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–72.
doi: 10.1093/nar/gkj067
Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004;117(4):495–502.
pubmed: 15137942 doi: 10.1016/S0092-8674(04)00416-7
Trammell SA, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7:12948.
pubmed: 27721479 pmcid: 5062546 doi: 10.1038/ncomms12948
Conze D, Brenner C, Kruger CL. Safety and metabolism of long-term administration of NIAGEN (nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci Rep. 2019;9(1):9772.
pubmed: 31278280 pmcid: 6611812 doi: 10.1038/s41598-019-46120-z
Airhart SE, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12(12):e0186459.
pubmed: 29211728 pmcid: 5718430 doi: 10.1371/journal.pone.0186459
Brakedal B, et al. The NADPARK study: a randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab. 2022;34(3):396-407 e6.
pubmed: 35235774 doi: 10.1016/j.cmet.2022.02.001
Vreones M, et al. Oral nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative pathology in plasma extracellular vesicles enriched for neuronal origin. Aging Cell. 2022;22:e13754.
pubmed: 36515353 pmcid: 9835564 doi: 10.1111/acel.13754
Nasreddine ZS, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.
pubmed: 15817019 doi: 10.1111/j.1532-5415.2005.53221.x
Segal DL, et al. Development and initial validation of a self-report assessment tool for anxiety among older adults: the Geriatric Anxiety Scale. J Anxiety Disord. 2010;24(7):709–14.
pubmed: 20558032 doi: 10.1016/j.janxdis.2010.05.002
Trammell SA, Brenner C. Targeted, LCMS-based metabolomics for quantitative measurement of NAD(+) metabolites. Comput Struct Biotechnol J. 2013;4:e201301012.
pubmed: 24688693 pmcid: 3962138 doi: 10.5936/csbj.201301012
Aryee MJ, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.
pubmed: 24478339 pmcid: 4016708 doi: 10.1093/bioinformatics/btu049
Ram V, ZJ C. ggplot2: elegant graphics for data analysis. 2nd ed. Meas Interdiscip Res Perspect; 2019.
Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Martorell-Marugan J, Gonzalez-Rumayor V, Carmona-Saez P. mCSEA: detecting subtle differentially methylated regions. Bioinformatics. 2019;35(18):3257–62.
pubmed: 30753302 doi: 10.1093/bioinformatics/btz096
Hannum G, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.
pubmed: 23177740 doi: 10.1016/j.molcel.2012.10.016
Levine ME, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.
pubmed: 29676998 pmcid: 5940111 doi: 10.18632/aging.101414
Lu AT, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27.
pubmed: 30669119 pmcid: 6366976 doi: 10.18632/aging.101684
Ho J, et al. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019;16(7):565–6.
pubmed: 31217592 doi: 10.1038/s41592-019-0470-3
Katz S, et al. Studies of illness in the aged. The index of Adl: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914–9.
pubmed: 14044222 doi: 10.1001/jama.1963.03060120024016
Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.
pubmed: 5349366 doi: 10.1093/geront/9.3_Part_1.179
Royall DR, Mahurin RK, Gray KF. Bedside assessment of executive cognitive impairment: the executive interview. J Am Geriatr Soc. 1992;40(12):1221–6.
pubmed: 1447438 doi: 10.1111/j.1532-5415.1992.tb03646.x
Royall DR, Cordes JA, Polk M. CLOX: an executive clock drawing task. J Neurol Neurosurg Psychiatry. 1998;64(5):588–94.
pubmed: 9598672 pmcid: 2170069 doi: 10.1136/jnnp.64.5.588
Douaud G, et al. Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain. 2007;130(Pt 9):2375–86.
pubmed: 17698497 doi: 10.1093/brain/awm184
Good CD, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(1 Pt 1):21–36.
pubmed: 11525331 doi: 10.1006/nimg.2001.0786
Smith SM, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208–19.
pubmed: 15501092 doi: 10.1016/j.neuroimage.2004.07.051
Andersson JL, Jenkinson M, Smith S. Non-linear registration aka spatial normalisation. Oxford, United Kingdom: FMRIB Centre; 2007.
Ma C, et al. Variational Bayesian inference for a nonlinear forward model. IEEE Trans Signal Proc. 2009;57(1):223–36.
doi: 10.1109/TSP.2008.2005752
Jenkinson M, et al. Fsl. Neuroimage. 2012;62(2):782–90.
pubmed: 21979382 doi: 10.1016/j.neuroimage.2011.09.015
Laird AR, et al. Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci. 2009;29(46):14496–505.
pubmed: 19923283 pmcid: 2820256 doi: 10.1523/JNEUROSCI.4004-09.2009
Guralnik JM, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94.
pubmed: 8126356 doi: 10.1093/geronj/49.2.M85
Martens CR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286.
pubmed: 29599478 pmcid: 5876407 doi: 10.1038/s41467-018-03421-7
Li K, et al. Progressive bidirectional age-related changes in default mode network effective connectivity across six decades. Front Aging Neurosci. 2016;8:137.
pubmed: 27378909 pmcid: 4905965 doi: 10.3389/fnagi.2016.00137
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84.
pubmed: 29643443 doi: 10.1038/s41576-018-0004-3
Grant R, et al. A pilot study investigating changes in the human plasma and urine NAD+ metabolome during a 6 hour intravenous infusion of NAD. Front Aging Neurosci. 2019;11:257.
pubmed: 31572171 pmcid: 6751327 doi: 10.3389/fnagi.2019.00257
Elhassan YS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD(+) metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717-1728 e6.
pubmed: 31412242 pmcid: 6702140 doi: 10.1016/j.celrep.2019.07.043
Remie CME, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112.
Dollerup OL, et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr. 2018;108(2):343–53.
pubmed: 29992272 doi: 10.1093/ajcn/nqy132
Krishnan K, et al. Changes in Montreal Cognitive Assessment scores over time. Assessment. 2017;24(6):772–7.
pubmed: 27318033 doi: 10.1177/1073191116654217
Jagust WJ, et al. Brain function and cognition in a community sample of elderly Latinos. Neurology. 2002;59(3):378–83.
pubmed: 12177371 doi: 10.1212/WNL.59.3.378
Haan MN, et al. Prevalence of dementia in older Latinos: the influence of type 2 diabetes mellitus, stroke and genetic factors. J Am Geriatr Soc. 2003;51(2):169–77.
pubmed: 12558712 doi: 10.1046/j.1532-5415.2003.51054.x
Mulrow CD, et al. Function and medical comorbidity in south Texas nursing home residents: variations by ethnic group. J Am Geriatr Soc. 1996;44(3):279–84.
pubmed: 8600196 doi: 10.1111/j.1532-5415.1996.tb00914.x
Tabatabaei-Jafari H, Shaw ME, Cherbuin N. Cerebral atrophy in mild cognitive impairment: a systematic review with meta-analysis. Alzheimers Dement (Amst). 2015;1(4):487–504.
pubmed: 27239527 pmcid: 4879488 doi: 10.1016/j.dadm.2015.11.002
Damoiseaux JS, et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex. 2008;18(8):1856–64.
pubmed: 18063564 doi: 10.1093/cercor/bhm207
Jones DT, et al. Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology. 2011;77(16):1524–31.
pubmed: 21975202 pmcid: 3198977 doi: 10.1212/WNL.0b013e318233b33d
Greicius MD, et al. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101(13):4637–42.
pubmed: 15070770 pmcid: 384799 doi: 10.1073/pnas.0308627101
Arora A, et al. Left inferior-parietal lobe activity in perspective tasks: identity statements. Front Hum Neurosci. 2015;9:360.
pubmed: 26175677 pmcid: 4485079 doi: 10.3389/fnhum.2015.00360
Dai W, et al. Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology. 2009;250(3):856–66.
pubmed: 19164119 pmcid: 2680168 doi: 10.1148/radiol.2503080751
Zhou J, et al. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73(6):1216–27.
pubmed: 22445348 pmcid: 3361461 doi: 10.1016/j.neuron.2012.03.004
Fatokun AA, Stone TW, Smith RA. Oxidative stress in neurodegeneration and available means of protection. Front Biosci. 2008;13:3288–311.
pubmed: 18508433 doi: 10.2741/2926
Zhang H, Wang Y, Lyu D, Li Y, Li W, Wang Q, Li Y, Qin Q, Wang X, Gong M, Jiao H, Liu W, Jia J. Cerebral blood flow in mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Ageing Res Rev. 2021;71.
Studenski S, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):50–8.
pubmed: 21205966 pmcid: 3080184 doi: 10.1001/jama.2010.1923
Ummarino S, et al. NAD modulates DNA methylation and cell differentiation. Cells. 2021;10(11).
Chang J, et al. Nicotinamide adenine dinucleotide (NAD)-regulated DNA methylation alters CCCTC-binding factor (CTCF)/cohesin binding and transcription at the BDNF locus. Proc Natl Acad Sci U S A. 2010;107(50):21836–41.
pubmed: 21106760 pmcid: 3003122 doi: 10.1073/pnas.1002130107

Auteurs

Miranda E Orr (ME)

Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, 575 Patterson Ave, Winston-Salem, NC, 27101, USA. morr@wakehealth.edu.
Salisbury VA Medical Center, Salisbury, NC, 28144, USA. morr@wakehealth.edu.

Eithan Kotkowski (E)

Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.

Paulino Ramirez (P)

Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
Department of Cell Systems and Anatomy, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.

Darcy Bair-Kelps (D)

Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.

Qianqian Liu (Q)

Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.

Charles Brenner (C)

Department of Diabetes & Cancer Metabolism, City of Hope, Duarte, CA, 91010, USA.

Mark S Schmidt (MS)

Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.

Peter T Fox (PT)

Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.

Anis Larbi (A)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore.

Crystal Tan (C)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore.

Glenn Wong (G)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore.

Jonathan Gelfond (J)

Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.

Bess Frost (B)

Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
Department of Cell Systems and Anatomy, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.

Sara Espinoza (S)

Center for Translational Geroscience, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Nicolas Musi (N)

Center for Translational Geroscience, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Becky Powers (B)

Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
Department of Medicine, Division of Geriatrics, Gerontology, and Palliative Medicine, University of Texas Health Science Center San Antonio, San Antonio, USA.

Classifications MeSH