DDR2-regulated arginase activity in ovarian cancer-associated fibroblasts promotes collagen production and tumor progression.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
23 Nov 2023
Historique:
received: 17 05 2023
accepted: 30 10 2023
revised: 21 10 2023
medline: 24 11 2023
pubmed: 24 11 2023
entrez: 23 11 2023
Statut: aheadofprint

Résumé

Ovarian cancer has poor survival outcomes particularly for advanced stage, metastatic disease. Metastasis is promoted by interactions of stromal cells, such as cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), with tumor cells. CAFs play a key role in tumor progression by remodeling the TME and extracellular matrix (ECM) to result in a more permissive environment for tumor progression. It has been shown that fibroblasts, in particular myofibroblasts, utilize metabolism to support ECM remodeling. However, the intricate mechanisms by which CAFs support collagen production and tumor progression are poorly understood. In this study, we show that the fibrillar collagen receptor, Discoidin Domain Receptor 2 (DDR2), promotes collagen production in human and mouse omental CAFs through arginase activity. CAFs with high DDR2 or arginase promote tumor colonization in the omentum. In addition, DDR2-depleted CAFs had decreased ornithine levels leading to decreased collagen production and polyamine levels compared to WT control CAFs. Tumor cell invasion was decreased in the presence CAF conditioned media (CM) depleted of DDR2 or arginase-1, and this invasion defect was rescued in the presence of CM from DDR2-depleted CAFs that constitutively overexpressed arginase-1. Similarly, the addition of exogenous polyamines to CM from DDR2-depleted CAFs led to increased tumor cell invasion. We detected SNAI1 protein at the promoter region of the arginase-1 gene, and DDR2-depleted CAFs had decreased levels of SNAI1 protein at the arginase-1 promoter region. Furthermore, high stromal arginase-1 expression correlated with poor survival in ovarian cancer patients. These findings highlight how DDR2 regulates collagen production by CAFs in the tumor microenvironment by controlling the transcription of arginase-1, and CAFs are a major source of arginase activity and L-arginine metabolites in ovarian cancer models.

Identifiants

pubmed: 37996700
doi: 10.1038/s41388-023-02884-3
pii: 10.1038/s41388-023-02884-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NCI NIH HHS
ID : R01 CA234553
Pays : United States
Organisme : NICHD NIH HHS
ID : K12 HD000849
Pays : United States

Informations de copyright

© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009;139:891–906.
pubmed: 19931152 pmcid: 2788004 doi: 10.1016/j.cell.2009.10.027
Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.
pubmed: 23708000 doi: 10.1038/ncb2756
Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178:1221–32.
pubmed: 21356373 pmcid: 3070581 doi: 10.1016/j.ajpath.2010.11.076
Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4:38.
pubmed: 17190588 pmcid: 1781458 doi: 10.1186/1741-7015-4-38
Bayer SVH, Grither WR, Brenot A, Hwang PY, Barcus CE, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. eLife 2019;8:e45508.
pubmed: 31144616 pmcid: 6555593 doi: 10.7554/eLife.45508
Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.
pubmed: 18442412 pmcid: 2386807 doi: 10.1186/1741-7015-6-11
Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.
pubmed: 16572188 doi: 10.1038/nrc1877
Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14:430–9.
pubmed: 24827502 pmcid: 4283800 doi: 10.1038/nrc3726
Cho A, Howell VM, Colvin EK. The extracellular matrix in epithelial ovarian cancer - a piece of a puzzle. Front Oncol. 2015;5:245.
pubmed: 26579497 pmcid: 4629462 doi: 10.3389/fonc.2015.00245
Kenny HA, Kaur S, Coussens LM, Lengyel E. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Investig. 2008;118:1367–79.
pubmed: 18340378 pmcid: 2267016 doi: 10.1172/JCI33775
Kenny HA, Chiang CY, White EA, Schryver EM, Habis M, Romero IL, et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J Clin Invest. 2014;124:4614–28.
pubmed: 25202979 pmcid: 4191043 doi: 10.1172/JCI74778
Chua HH, Yeh TH, Wang YP, Huang YT, Sheen TS, Lo YC, et al. Upregulation of discoidin domain receptor 2 in nasopharyngeal carcinoma. Head Neck. 2008;30:427–36.
pubmed: 18023033 doi: 10.1002/hed.20724
Corsa CA, Brenot A, Grither WR, Van Hove S, Loza AJ, Zhang K, et al. The action of discoidin domain receptor 2 in basal tumor cells and stromal cancer-associated fibroblasts is critical for breast cancer metastasis. Cell Rep. 2016;15:2510–23.
pubmed: 27264173 pmcid: 4909540 doi: 10.1016/j.celrep.2016.05.033
Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011;1:78–89.
pubmed: 22328973 pmcid: 3274752 doi: 10.1158/2159-8274.CD-11-0005
Ren T, Zhang W, Liu X, Zhao H, Zhang J, Zhang J, et al. Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial-mesenchymal transition programme under hypoxia. J Pathol. 2014;234:526–37.
pubmed: 25130389 doi: 10.1002/path.4415
Xie B, Lin W, Ye J, Wang X, Zhang B, Xiong S, et al. DDR2 facilitates hepatocellular carcinoma invasion and metastasis via activating ERK signaling and stabilizing SNAIL1. J Exp Clin Cancer Res. 2015;34:101.
pubmed: 26362312 pmcid: 4567819 doi: 10.1186/s13046-015-0218-6
Grither WR, Divine LM, Meller EH, Wilke DJ, Desai RA, Loza AJ, et al. TWIST1 induces expression of discoidin domain receptor 2 to promote ovarian cancer metastasis. Oncogene. 2018;37:1714–29.
pubmed: 29348456 pmcid: 5876071 doi: 10.1038/s41388-017-0043-9
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, et al. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;11:938.
pubmed: 32499785 pmcid: 7242730 doi: 10.3389/fimmu.2020.00938
Chang CI, Liao JC, Kuo L. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res. 2001;61:1100–6.
pubmed: 11221839
Munder M, Engelhardt M, Knies D, Medenhoff S, Wabnitz G, Luckner-Minden C, et al. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion. PLoS ONE. 2013;8:e63521.
pubmed: 23717444 pmcid: 3662698 doi: 10.1371/journal.pone.0063521
Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.
pubmed: 26858199 pmcid: 4775398 doi: 10.1016/j.it.2016.01.004
Schab AM, Greenwade MM, Stock E, Lomonosova E, Cho K, Grither WR, et al. Stromal DDR2 Promotes Ovarian Cancer Metastasis through Regulation of Metabolism and Secretion of Extracellular Matrix Proteins. Mol Cancer Res. 2023;21:1234–48.
Walton J, Blagih J, Ennis D, Leung E, Dowson S, Farquharson M, et al. CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high-grade serous carcinoma. Cancer Res. 2016;76:6118–29.
pubmed: 27530326 pmcid: 5802386 doi: 10.1158/0008-5472.CAN-16-1272
Iyer S, Zhang S, Yucel S, Horn H, Smith SG, Reinhardt F, et al. Genetically defined syngeneic mouse models of ovarian cancer as tools for the discovery of combination immunotherapy. Cancer Discov. 2021;11:384–407.
pubmed: 33158843 doi: 10.1158/2159-8290.CD-20-0818
Akinjiyan FA, Dave RM, Alpert E, Longmore GD, Fuh KC. DDR2 expression in cancer-associated fibroblasts promotes ovarian cancer tumor invasion and metastasis through periostin-ITGB1. Cancers. 2022;14:3482.
pubmed: 35884543 pmcid: 9319689 doi: 10.3390/cancers14143482
Kenny HA, Krausz T, Yamada SD, Lengyel E. Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer. 2007;121:1463–72.
pubmed: 17546601 doi: 10.1002/ijc.22874
Wang YL, Zhao XM, Shuai ZF, Li CY, Bai QY, Yu XW, et al. Snail promotes epithelial-mesenchymal transition and invasiveness in human ovarian cancer cells. Int J Clin Exp Med. 2015;8:7388–93.
pubmed: 26221280 pmcid: 4509225
Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15:677–87.
pubmed: 23644467 pmcid: 3794710 doi: 10.1038/ncb2743
Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.
pubmed: 10655586 doi: 10.1038/35000025
Stanisavljevic J, Porta-de-la-Riva M, Batlle R, de Herreros AG, Baulida J. The p65 subunit of NF-κB and PARP1 assist Snail1 in activating fibronectin transcription. J Cell Sci. 2011;124:4161–71.
pubmed: 22223884 doi: 10.1242/jcs.078824
Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH, et al. Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell. 2014;26:534–48.
pubmed: 25314079 doi: 10.1016/j.ccell.2014.09.002
Pegg AE, Williams-Ashman HG. Biosynthesis of putrescine in the prostate gland of the rat. Biochem J. 1968;108:533–9.
pubmed: 5667265 pmcid: 1198847 doi: 10.1042/bj1080533
Pegg AE, Williams-Ashman HG. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate. J Biol Chem. 1969;244:682–93.
pubmed: 4889860 doi: 10.1016/S0021-9258(18)94408-X
Tabor H, Tabor CW. Spermidine, spermine, and related amines. Pharm Rev. 1964;16:245–300.
pubmed: 14211123
Li P, Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids. 2018;50:29–38.
pubmed: 28929384 doi: 10.1007/s00726-017-2490-6
Kivirikko KI, Pihlajaniemi T. Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol. 2009;72:325–98.
Seifter E, Rettura G, Barbul A, Levenson SM. Arginine: an essential amino acid for injured rats. Surgery. 1978;84:224–30.
pubmed: 684614
Steggerda SM, Bennett MK, Chen J, Emberley E, Huang T, Janes JR, et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 2017;5:101.
pubmed: 29254508 pmcid: 5735564 doi: 10.1186/s40425-017-0308-4
Mandal S, Mandal A, Johansson HE, Orjalo AV, Park MH. Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc Natl Acad Sci. 2013;110:2169–74.
pubmed: 23345430 pmcid: 3568356 doi: 10.1073/pnas.1219002110
Kubota S, Kiyosawa H, Nomura Y, Yamada T, Seyama Y. Ornithine decarboxylase overexpression in mouse 10T12 fibroblasts: cellular transformation and invasion. J Natl Cancer Inst. 1997;89:567–71.
pubmed: 9106645 doi: 10.1093/jnci/89.8.567
Kay EJ, Paterson K, Riera-Domingo C, Sumpton D, Däbritz JHM, Tardito S, et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat Metab. 2022;4:693–710.
pubmed: 35760868 pmcid: 9236907 doi: 10.1038/s42255-022-00582-0
Schwörer S, Berisa M, Violante S, Qin W, Zhu J, Hendrickson RC, et al. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J. 2020;39:e103334.
pubmed: 32134147 pmcid: 7156964 doi: 10.15252/embj.2019103334
Nigdelioglu R, Hamanaka RB, Meliton AY, O’Leary E, Witt LJ, Cho T, et al. Transforming growth factor (TGF)-β promotes de Novo serine synthesis for collagen production. J Biol Chem. 2016;291:27239–51.
pubmed: 27836973 pmcid: 5207151 doi: 10.1074/jbc.M116.756247
Foster DS, Jones RE, Ransom RC, Longaker MT, Norton JA. The evolving relationship of wound healing and tumor stroma. JCI Insight. 2018;3. https://insight.jci.org/articles/view/99911 , https://pubmed.ncbi.nlm.nih.gov/30232274/ .
Witte MB, Barbul A, Schick MA, Vogt N, Becker HD. Upregulation of arginase expression in wound-derived fibroblasts. J Surg Res. 2002;105:35–42.
pubmed: 12069499 doi: 10.1006/jsre.2002.6443
Campbell L, Saville CR, Murray PJ, Cruickshank SM, Hardman MJ. Local arginase 1 activity is required for cutaneous wound healing. J Invest Dermatol. 2013;133:2461–70.
pubmed: 23552798 pmcid: 3778883 doi: 10.1038/jid.2013.164
Kay EJ, Koulouras G, Zanivan S. Regulation of extracellular matrix production in activated fibroblasts: roles of amino acid metabolism in collagen synthesis. Front Oncol. 2021;11:719922.
pubmed: 34513697 pmcid: 8429785 doi: 10.3389/fonc.2021.719922
Ino Y, Yamazaki-Itoh R, Oguro S, Shimada K, Kosuge T, Zavada J, et al. Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer. PLoS ONE. 2013;8:e55146.
pubmed: 23424623 pmcid: 3570471 doi: 10.1371/journal.pone.0055146
Érsek B, Silló P, Cakir U, Molnár V, Bencsik A, Mayer B, et al. Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune checkpoint regulators via increased arginase activity. Cell Mol Life Sci. 2021;78:661–73.
pubmed: 32328671 doi: 10.1007/s00018-020-03517-8
Tu MM, Lee FYF, Jones RT, Kimball AK, Saravia E, Graziano RF, et al. Targeting DDR2 enhances tumor response to anti–PD-1 immunotherapy. Sci Adv. 2019;5:eaav2437.
pubmed: 30801016 pmcid: 6382401 doi: 10.1126/sciadv.aav2437
Yang X, Li J, Zhao L, Chen Y, Cui Z, Xu T, et al. Targeting adipocytic discoidin domain receptor 2 impedes fat gain while increasing bone mass. Cell Death Differ. 2022;29:737–49.
pubmed: 34645939 doi: 10.1038/s41418-021-00887-9
Lin KL, Chou CH, Hsieh SC, Hwa SY, Lee MT, Wang FF. Transcriptional upregulation of DDR2 by ATF4 facilitates osteoblastic differentiation through p38 MAPK-mediated Runx2 activation. J Bone Min Res. 2010;25:2489–503.
doi: 10.1002/jbmr.159
Mohamed FF, Ge C, Cowling RT, Lucas D, Hallett SA, Ono N, et al. The collagen receptor, discoidin domain receptor 2, functions in Gli1-positive skeletal progenitors and chondrocytes to control bone development. Bone Res. 2022;10:11.
pubmed: 35140200 pmcid: 8828874 doi: 10.1038/s41413-021-00182-w
Labrador JP, Azcoitia V, Tuckermann J, Lin C, Olaso E, Mañes S, et al. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep. 2001;2:446–52.
pubmed: 11375938 pmcid: 1083888 doi: 10.1093/embo-reports/kve094
Pagani CA, Bancroft AC, Tower RJ, Livingston N, Sun Y, Hong JY, et al. Discoidin domain receptor 2 regulates aberrant mesenchymal lineage cell fate and matrix organization. Sci Adv. 2022;8:eabq6152.
pubmed: 36542719 pmcid: 9770942 doi: 10.1126/sciadv.abq6152

Auteurs

Favour A Akinjiyan (FA)

Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Center for Reproductive Health Sciences, Washington University, St Louis, MO, 63110, USA.
ICCE Institute, Washington University, St Louis, MO, 63110, USA.
Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA.

Zainab Ibitoye (Z)

Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Center for Reproductive Health Sciences, Washington University, St Louis, MO, 63110, USA.
ICCE Institute, Washington University, St Louis, MO, 63110, USA.
Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA.

Peinan Zhao (P)

Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Leah P Shriver (LP)

Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA.
Department of Chemistry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Center for Metabolomics and Isotope Tracing, Washington University, St. Louis, MO, 63130, USA.

Gary J Patti (GJ)

Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA.
Department of Chemistry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Center for Metabolomics and Isotope Tracing, Washington University, St. Louis, MO, 63130, USA.

Gregory D Longmore (GD)

ICCE Institute, Washington University, St Louis, MO, 63110, USA.
Department of Medicine (Oncology), Washington University, St. Louis, MO, 63110, USA.

Katherine C Fuh (KC)

Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA. katherine.fuh@ucsf.edu.
Center for Reproductive Health Sciences, Washington University, St Louis, MO, 63110, USA. katherine.fuh@ucsf.edu.
Department of Obstetrics and Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143, USA. katherine.fuh@ucsf.edu.

Classifications MeSH