HER2 copy number determination in breast cancer using the highly sensitive droplet digital PCR method.
Breast cancer
Copy number
Droplet digital PCR (ddPCR)
ERBB2
HER2
Journal
Virchows Archiv : an international journal of pathology
ISSN: 1432-2307
Titre abrégé: Virchows Arch
Pays: Germany
ID NLM: 9423843
Informations de publication
Date de publication:
23 Nov 2023
23 Nov 2023
Historique:
received:
11
04
2023
accepted:
10
11
2023
revised:
07
11
2023
pubmed:
24
11
2023
medline:
24
11
2023
entrez:
23
11
2023
Statut:
aheadofprint
Résumé
Human epidermal growth factor receptor 2 (HER)-positive breast cancer (BC) is characterized by an aggressive clinical course. In the case of HER2 overexpression/amplification, patients benefit from HER2-targeting therapies. Standardized diagnostic HER2 assessment includes immunohistochemistry (IHC) and/or in situ hybridization (ISH). The aim of this study was to compare this "gold standard" with the Droplet Digital™ polymerase chain reaction (ddPCR), a method that allows sensitive and precise detection of copy number variations (CNV) in FFPE (formalin-fixed, paraffin-embedded) DNA samples. Partitioning of the PCR reaction into 20,000 droplets enables a precise quantitative "CN" discrimination also in heterogeneous samples. FFPE breast cancer samples (n = 170) with routinely assessed HER2 status by IHC/ISH were retrospectively analyzed using the ddPCR CNV ERBB2 assay. Comparison of HER2 status assessment by the two methods revealed concordant results in 92.9% (158/170) of the cases. Discrepant cases were verified and interpreted. For ddPCR, a cut off value of 3 HER2 copies was set to distinguish between HER2-negative and HER2-positive BC. Results obtained with the ddPCR CNV ERBB2 assay were consistent and reproducible, and serial dilutions demonstrated a high stability and sensitivity of the method. The ddPCR CNV ERBB2 assay may be a specific and convenient tool to quantify HER2 copy numbers in BC samples. In our study, this method showed high reproducibility in accuracy of HER2 assessment compared to IHC/ISH analysis.
Identifiants
pubmed: 37996704
doi: 10.1007/s00428-023-03706-3
pii: 10.1007/s00428-023-03706-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Paracelsus Medizinische Privatuniversität
ID : R-18/04/108-JAK
Organisme : Österreichische Krebshilfe Salzburg
ID : 2018/19
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2023. The Author(s).
Références
Payne SJ, Bowen RL, Jones JL, Wells CA (2008) Predictive markers in breast cancer-the present. Histopathology 52:82–90. https://doi.org/10.1111/j.1365-2559.2007.02897
doi: 10.1111/j.1365-2559.2007.02897
pubmed: 18171419
Li J, Chen Z, Su K, Zeng J (2015) Clinicopathological classification and traditional prognostic indicators of breast cancer. Int J Clin Exp Pathol 1:8500–8505
Harbeck N, Gnant M (2017) Breast cancer. Lancet 389:1134–1150. https://doi.org/10.1016/S0140-6736(16)31891-8
doi: 10.1016/S0140-6736(16)31891-8
pubmed: 27865536
Marotta M, Onodera T, Johnson J, Budd GT, Watanabe T, Cui X, Giuliano AE, Niida A, Tanaka H (2017) Palindromic amplification of the ERBB2 oncogene in primary HER2-positive breast tumors. Sci Rep 7:41921. https://doi.org/10.1038/srep41921
doi: 10.1038/srep41921
pubmed: 28211519
pmcid: 5314454
Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469–6487. https://doi.org/10.1038/sj.onc.1210477
doi: 10.1038/sj.onc.1210477
pubmed: 17471238
pmcid: 3021475
Gajria D, Chandarlapaty S (2011) HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther 11:263–275. https://doi.org/10.1586/era.10.226
doi: 10.1586/era.10.226
pubmed: 21342044
pmcid: 3092522
Milani A, Montemurro F, Gioeni L, Aglietta M, Valabrega G (2010) Role of trastuzumab in the management of HER2-positive metastatic breast cancer. Breast Cancer 2:93–109. https://doi.org/10.2147/BCTT.S6070
doi: 10.2147/BCTT.S6070
pubmed: 24367170
pmcid: 3846373
Ahmed S, Sami A, Xiang J (2015) HER2-directed therapy: current treatment options for HER2-positive breast cancer. Breast Cancer 22:101–116. https://doi.org/10.1007/s12282-015-0587-x
doi: 10.1007/s12282-015-0587-x
pubmed: 25634227
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New Engl J Med 344:783–792. https://doi.org/10.1056/NEJM200103153441101
doi: 10.1056/NEJM200103153441101
pubmed: 11248153
Awada A, Bozovic-Spasojevic I, Chow L (2012) New therapies in HER2-positive breast cancer: a major step towards a cure of the disease? Cancer Treat Rev 38:494–504. https://doi.org/10.1016/j.ctrv.2012.01.001
doi: 10.1016/j.ctrv.2012.01.001
pubmed: 22305205
Zardavas D, Cameron D, Krop I, Piccart M (2013) Beyond trastuzumab and lapatinib: new options for HER2-positive breast cancer. Am Soc Clin Oncol Educ Book https://doi.org/10.14694/EdBook_AM.2013.33.e2
Nelson MH, Dolder CR (2006) Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother 40:261–269. https://doi.org/10.1345/aph.1G387
doi: 10.1345/aph.1G387
pubmed: 16418322
Rakha EA, Starczynski J, Lee AH, Ellis IO (2014) The updated ASCO/CAP guideline recommendations for HER2 testing in the management of invasive breast cancer: a critical review of their implications for routine practice. Histopathology 64:609–615. https://doi.org/10.1111/his.12357
doi: 10.1111/his.12357
pubmed: 24382093
Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol Off J Am Soc Clin Oncol 36:2105–2122. https://doi.org/10.1200/JCO.2018.77.8738
doi: 10.1200/JCO.2018.77.8738
Farshid G, Dhatrak D, Gilhotra A, Koszyca B, Nolan J (2020) The impact of 2018 ASCO-CAP HER2 testing guidelines on breast cancer HER2 results. An audit of 2132 consecutive cases evaluated by immunohistochemistry and in situ hybridization. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 33:1783–1790. https://doi.org/10.1038/s41379-020-0555-7
Zhang H, Moisini I, Ajabnoor RM, Turner BM, Hicks DG (2020) Applying the New Guidelines of HER2 Testing in Breast Cancer. Curr Oncol Rep 22:51. https://doi.org/10.1007/s11912-020-0901-4
doi: 10.1007/s11912-020-0901-4
pubmed: 32346807
Perez EA, Cortés J, Gonzalez-Angulo AM, Bartlett JM (2014) HER2 testing: current status and future directions. Cancer Treat Rev 40:276–284. https://doi.org/10.1016/j.ctrv.2013.09.001
doi: 10.1016/j.ctrv.2013.09.001
pubmed: 24080154
Furrer D, Sanschagrin F, Jacob S, Diorio C (2015) Advantages and disadvantages of technologies for HER2 testing in breast cancer specimens. Am J Clin Pathol 144:686–703. https://doi.org/10.1309/AJCPT41TCBUEVDQC
doi: 10.1309/AJCPT41TCBUEVDQC
pubmed: 26486732
Krüger JM, Thomas M, Korn R, Dietmann G, Rutz C, Brockhoff G, Specht K, Hasmann M, Feuerhake F (2013) Detection of truncated HER2 forms in formalin-fixed, paraffin-embedded breast cancer tissue captures heterogeneity and is not affected by HER2-targeted therapy. Am J Pathol 183:336–343. https://doi.org/10.1016/j.ajpath.2013.04.010
doi: 10.1016/j.ajpath.2013.04.010
pubmed: 23727348
Singer CF, Tan YY, Fitzal F, Steger GG, Egle D, Reiner A, Rudas M, Moinfar F, Gruber C, Petru E, Bartsch R, Tendl KA, Fuchs D, Seifert M, Exner R, Balic M, Bago-Horvath Z, Filipits M, Gnant M, Austrian Breast and Colorectal Cancer Study Group (2017) Pathological complete response to neoadjuvant trastuzumab is dependent on HER2/CEP17 ratio in HER2-amplified early breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 23:3676–3683. https://doi.org/10.1158/1078-0432.CCR-16-2373
doi: 10.1158/1078-0432.CCR-16-2373
Fuchs EM, Köstler WJ, Horvat R, Hudelist G, Kubista E, Attems J, Zielinski CC, Singer CF (2014) High-level ERBB2 gene amplification is associated with a particularly short time-to-metastasis, but results in a high rate of complete response once trastuzumab-based therapy is offered in the metastatic setting. Int J Cancer 135:224–231. https://doi.org/10.1002/ijc.28660
doi: 10.1002/ijc.28660
pubmed: 24311197
Choi JH, Jeon CW, Kim YO, Jung S (2020) Pathological complete response to neoadjuvant trastuzumab and pertuzumab therapy is related to human epidermal growth factor receptor 2 (HER2) amplification level in HER2-amplified breast cancer. Medicine 99:e23053. https://doi.org/10.1097/MD.0000000000023053
doi: 10.1097/MD.0000000000023053
pubmed: 33181670
pmcid: 7668516
Mazaika E, Homsy J (2014) Digital Droplet PCR: CNV Analysis and Other Applications. Curr Protocol Human Genet 82:7.24.1–7.24.13. https://doi.org/10.1002/0471142905.hg0724s82
Klapper LN, Kirschbaum MH, Sela M, Yarden Y (2000) Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv Cancer Res 77:25–79
doi: 10.1016/S0065-230X(08)60784-8
pubmed: 10549355
Lim SJ, Cantillep A, Carpenter PM (2013) Validation and workflow optimization of human epidermal growth factor receptor 2 testing using INFORM HER2 dual-color in situ hybridization. Hum Pathol 44:2590–2596. https://doi.org/10.1016/j.humpath.2013.07.005
doi: 10.1016/j.humpath.2013.07.005
pubmed: 24075600
Hill T, Lewicki P (2006) Statistics: methods and applications. StatSoft, Inc., StatSoft, Tulsa, OK. https://doi.org/10.1016/B978-0-323-03707-5.50024-3
doi: 10.1016/B978-0-323-03707-5.50024-3
Sun H, Chen H, Crespo J, Tang G, Robinson M, Lim B, Şahin AA (2021) Clinicopathological features of breast cancer with polysomy 17 and its response to neoadjuvant chemotherapy. Eur J Breast Health 17:128–136. https://doi.org/10.4274/ejbh.galenos.2021.2021-2-9
doi: 10.4274/ejbh.galenos.2021.2021-2-9
pubmed: 33870112
pmcid: 8025723
Rakha EA, Miligy IM, Quinn CM, Provenzano E, Shaaban AM, Marchiò C, Toss MS, Gallagy G, Murray C, Walshe J, Katayama A, Eldib K, Badr N, Tanchel B, Millican-Slater R, Purdie C, Purnell D, Pinder SE, Ellis IO, Lee AHS (2021) Retrospective observational study of HER2 immunohistochemistry in borderline breast cancer patients undergoing neoadjuvant therapy, with an emphasis on Group 2 (HER2/CEP17 ratio ≥2.0, HER2 copy number <4.0 signals/cell) cases. Br J Cancer 124:1836–1842. https://doi.org/10.1038/s41416-021-01351-8
doi: 10.1038/s41416-021-01351-8
pubmed: 33762723
pmcid: 8144199
Crespo J, Sun H, Wu J, Ding QQ, Tang G, Robinson MK, Chen H, Sahin AA, Lim B (2020) Rate of reclassification of HER2-equivocal breast cancer cases to HER2-negative per the 2018 ASCO/CAP guidelines and response of HER2-equivocal cases to anti-HER2 therapy. PLoS One 12:e0241775. https://doi.org/10.1371/journal.pone.0241775
doi: 10.1371/journal.pone.0241775
Ahn S, Woo JW, Lee K, Park SY (2019) HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. J Pathol Transl Med 54:34–44. https://doi.org/10.4132/jptm.2019.11.03
doi: 10.4132/jptm.2019.11.03
pubmed: 31693827
pmcid: 6986968
Kunte S, Abraham J, Montero AJ (2020) Novel HER2-targeted therapies for HER2-positive metastatic breast cancer. Cancer 126:4278–4288. https://doi.org/10.1002/cncr.33102
doi: 10.1002/cncr.33102
pubmed: 32721042