Therapeutic Targeting of Krüppel-Like Factor 4 and Its Pharmacological Potential in Parkinson's Disease: a Comprehensive Review.

Apoptosis Autophagy KLF4 Neuroinflammation Oxidative stress Parkinson’s disease

Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
24 Nov 2023
Historique:
received: 11 08 2023
accepted: 10 11 2023
medline: 24 11 2023
pubmed: 24 11 2023
entrez: 23 11 2023
Statut: aheadofprint

Résumé

Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is found in different human tissues and shows diverse regulatory activities in a cell-dependent manner. In the brain, KLF4 controls various neurophysiological and neuropathological processes, and its contribution to various neurological diseases has been widely reported. Parkinson's disease (PD) is an age-related neurodegenerative disease that might have a connection with KLF4. In this review, we discussed the potential implication of KLF4 in fundamental molecular mechanisms of PD, including aberrant proteostasis, neuroinflammation, apoptosis, oxidative stress, and iron overload. The evidence collected herein sheds new light on KLF4-mediated pathways, which manipulation appears to be a promising therapeutic target for PD management. However, there is a gap in the knowledge on this topic, and extended research is required to understand the translational value of the KLF4-oriented therapeutical approach in PD.

Identifiants

pubmed: 37996730
doi: 10.1007/s12035-023-03800-2
pii: 10.1007/s12035-023-03800-2
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Shields JM, Christy RJ, Yang VW (1996) Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J Biol Chem 271(33):20009–20017
pubmed: 8702718 doi: 10.1074/jbc.271.33.20009
Xiang F et al (2021) 3, 3’-Diindolylmethane enhances paclitaxel sensitivity by suppressing DNMT1-mediated KLF4 methylation in breast cancer. Front Oncol 11:627856
pubmed: 34150611 pmcid: 8209418 doi: 10.3389/fonc.2021.627856
Zheng H et al (2009) gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol-Gastrointest Liver Physiol 296(3):G490–G498
pubmed: 19109406 doi: 10.1152/ajpgi.90393.2008
Luo D-D, Zhao F (2022) KLF4 suppresses the proliferation and metastasis of NSCLC cells via inhibition of MSI2 and regulation of the JAK/STAT3 signaling pathway. Transl Oncol 22:101396
pubmed: 35580385 pmcid: 9117691 doi: 10.1016/j.tranon.2022.101396
Morales-Martinez M et al (2020) MicroRNA-7 regulates migration and chemoresistance in non-Hodgkin lymphoma cells through regulation of KLF4 and YY1. Front Oncol 10:588893
pubmed: 33194748 pmcid: 7654286 doi: 10.3389/fonc.2020.588893
Ghaleb AM et al (2005) Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 15(2):92–96
pubmed: 15740636 doi: 10.1038/sj.cr.7290271
Rowland BD, Peeper DS (2006) KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6(1):11–23
pubmed: 16372018 doi: 10.1038/nrc1780
Kaushik DK et al (2010) Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflammation 7(1):1–20
doi: 10.1186/1742-2094-7-68
Mamonkin M et al (2013) Differential roles of KLF4 in the development and differentiation of CD8+ T cells. Immunol Lett 156(1–2):94–101
pubmed: 24075846 doi: 10.1016/j.imlet.2013.09.008
Miao X, Wu X, Shi W (2017) MicroRNA-346 regulates neural stem cell proliferation and differentiation by targeting KLF4. Am J Transl Res 9(12):5400
pubmed: 29312492 pmcid: 5752890
Qin S, Zhang C-L (2012) Role of Krüppel-like factor 4 in neurogenesis and radial neuronal migration in the developing cerebral cortex. Mol Cell Biol 32(21):4297–4305
pubmed: 22907754 pmcid: 3486145 doi: 10.1128/MCB.00838-12
Fan Y et al (2017) Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 9(5):352–363
pubmed: 28992202 pmcid: 5907833 doi: 10.1093/jmcb/mjx037
Qin S et al (2011) Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc Natl Acad Sci 108(52):21117–21121
pubmed: 22160720 pmcid: 3248552 doi: 10.1073/pnas.1112351109
Burgos K et al (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS ONE 9(5):e94839
pubmed: 24797360 pmcid: 4010405 doi: 10.1371/journal.pone.0094839
Huang T et al (2023) Protective effects of KLF4 on blood-brain barrier and oxidative stress after cerebral ischemia-reperfusion in rats through the Nrf2/Trx1 pathway. Cytokine 169:156288
pubmed: 37441941 doi: 10.1016/j.cyto.2023.156288
Cheng Z et al (2018) The role of KLF(4) in Alzheimer’s disease. Front Cell Neurosci 12:325
pubmed: 30297986 pmcid: 6160590 doi: 10.3389/fncel.2018.00325
Cheng Z et al (2018) The role of KLF4 in Alzheimer’s disease. Front Cell Neurosci 12:325
pubmed: 30297986 pmcid: 6160590 doi: 10.3389/fncel.2018.00325
Li L et al (2017) Krüppel-like factor 4 regulates amyloid-β (Aβ)-induced neuroinflammation in Alzheimer’s disease. Neurosci Lett 643:131–137
pubmed: 28189744 doi: 10.1016/j.neulet.2017.02.017
Hyeon JW, Kim AH, Yano H (2021) Epigenetic regulation in Huntington’s disease. Neurochem Int 148:105074
pubmed: 34038804 pmcid: 9110274 doi: 10.1016/j.neuint.2021.105074
Chiu F-L et al (2015) Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington’s disease iPSCs. Hum Mol Genet 24(21):6066–6079
pubmed: 26264576 doi: 10.1093/hmg/ddv318
Jeon I et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem cells 30(9):2054–2062
pubmed: 22628015 doi: 10.1002/stem.1135
Im W et al (2009) Stem cells transplantation and Huntington’s disease. Int J Stem Cells 2(2):102–108
pubmed: 24855528 pmcid: 4021764 doi: 10.15283/ijsc.2009.2.2.102
Zaman V et al (2021) Cellular and molecular pathophysiology in the progression of Parkinson’s disease. Metab Brain Dis 36:815–827
pubmed: 33599945 pmcid: 8170715 doi: 10.1007/s11011-021-00689-5
Zamanian MY et al (2023) Neuroprotective and anti-inflammatory effects of pioglitazone on Parkinson’s disease: a comprehensive narrative review of clinical and experimental findings. CNS Neurol Disord Drug Targets 22(10):1453–1461
pubmed: 36200161 doi: 10.2174/1871527322666221005122408
Bonner N et al (2020) Patients’ experiences of Parkinson’s disease: a qualitative study in glucocerebrosidase and idiopathic Parkinson’s disease. J Patient-Rep Outcomes 4:1–14
doi: 10.1186/s41687-020-00230-9
Hsieh L-F et al (2022) Ultrasonographic imaging findings of the shoulder in patients with Parkinson disease. J Orthop Sci 28(5):1004–1010
Oliveira LMA et al (2021) Alpha-synuclein research: defining strategic moves in the battle against Parkinson’s disease. npj Parkinson’s Dis 7(1):65–73
Kujawska M, Jodynis-Liebert J (2018) What is the evidence that Parkinson’s disease is a prion disorder, which originates in the gut? Int J Mol Sci 19(11):3573–3584
Kujawska M, Domanskyi A, Kreiner G (2021) Editorial: Common Pathways linking neurodegenerative diseases—the role of inflammation. Front Cell Neurosci 15:754051
Jayaraj RL et al (2022) Effect of citronellol on oxidative stress, neuroinflammation and autophagy pathways in an in vivo model of Parkinson’s disease. Heliyon 8(11):e11434
pubmed: 36387498 pmcid: 9663872 doi: 10.1016/j.heliyon.2022.e11434
Sayed AS et al (2022) Xanthotoxin modulates oxidative stress, inflammation, and MAPK signaling in a rotenone-induced Parkinson’s disease model. Life Sci 310:121129
pubmed: 36306871 doi: 10.1016/j.lfs.2022.121129
Qu L et al (2022) Lysosomal K+ channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson’s disease. EMBO Rep 23(9):e53234
pubmed: 35913019 pmcid: 9442313 doi: 10.15252/embr.202153234
Leathem A et al (2022) Evidence for oxidative pathways in the pathogenesis of PD: are antioxidants candidate drugs to ameliorate disease progression? Int J Mol Sci 23(13):6923
pubmed: 35805928 pmcid: 9266756 doi: 10.3390/ijms23136923
Kujawska M, Jodynis-Liebert J (2018) Polyphenols in Parkinson’s disease: a systematic review of in vivo studies. Nutrients 10(5):642
Kong B et al (2016) microRNA-7 protects against 1-Methyl-4-Phenylpyridinium iodide-induced cell apoptosis in SH-SY5Y cells by directly targeting Krupple-like factor 4. DNA Cell Biol 35(5):217–225
pubmed: 27003614 doi: 10.1089/dna.2015.3097
Song Y, Liu Y, Chen X (2018) MiR-212 Attenuates MPP(+)-induced neuronal damage by targeting KLF4 in SH-SY5Y cells. Yonsei Med J 59(3):416–424
pubmed: 29611404 pmcid: 5889994 doi: 10.3349/ymj.2018.59.3.416
Chen J et al (2013) Induction of KLF4 contributes to the neurotoxicity of MPP + in M17 cells: a new implication in Parkinson’s disease. J Mol Neurosci 51(1):109–117
pubmed: 23370975 doi: 10.1007/s12031-013-9961-3
El-Deeb AM et al (2023) Novel trajectories of the NK1R antagonist aprepitant in rotenone-induced Parkinsonism-like symptoms in rats: involvement of ERK5/KLF4/p62/Nrf2 signaling axis. Chem Biol Interact 380:110562
pubmed: 37224993 doi: 10.1016/j.cbi.2023.110562
Zhang W et al (1998) The gut-enriched Krüppel-like factor suppresses the activity of the CYP1A1 promoter in an Sp1-dependent fashion. J Biol Chem 273(28):17917–17925
pubmed: 9651398 doi: 10.1074/jbc.273.28.17917
Shields JM, Yang VW (1998) Identification of the DNA sequence that interacts with the gut-enriched Krüppel-like factor. Nucleic Acids Res 26(3):796–802
pubmed: 9443972 pmcid: 147321 doi: 10.1093/nar/26.3.796
Nandan MO, Yang VW (2009) The role of Krüppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histol Histopathol 24(10):1343
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676
pubmed: 16904174 doi: 10.1016/j.cell.2006.07.024
Yet S-F et al (1998) Human EZF, a Krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem 273(2):1026–1031
pubmed: 9422764 doi: 10.1074/jbc.273.2.1026
Jenkins TD et al (1998) Transactivation of the human keratin 4 and Epstein-Barr virus ED-L2 promoters by gut-enriched Krüppel-like factor. J Biol Chem 273(17):10747–10754
pubmed: 9553140 doi: 10.1074/jbc.273.17.10747
Shie J-L et al (2000) Role of gut-enriched Kruppel-like factor in colonic cell growth and differentiation. Am J Physiol-Gastrointest Liver Physiol 279(4):G806–G814
pubmed: 11005769 doi: 10.1152/ajpgi.2000.279.4.G806
Garrett-Sinha LA et al (1996) A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem 271(49):31384–31390
pubmed: 8940147 doi: 10.1074/jbc.271.49.31384
Pearson R et al (2008) Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol 40(10):1996–2001
pubmed: 17904406 doi: 10.1016/j.biocel.2007.07.018
Wei D et al (2005) Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27(1):23–31
pubmed: 16219632 doi: 10.1093/carcin/bgi243
Hu D et al (2015) Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun 6(1):8419
pubmed: 26420673 doi: 10.1038/ncomms9419
Evans PM, Liu C (2008) Roles of Krüppel-like factor 4 in normal homeostasis, cancer and stem cells. Acta Biochim Biophys Sin 40(7):554–564
pubmed: 18604447 doi: 10.1111/j.1745-7270.2008.00439.x
Ghaleb A et al (2007) Krüppel-like factor 4 exhibits antiapoptotic activity following γ-radiation-induced DNA damage. Oncogene 26(16):2365–2373
pubmed: 17016435 doi: 10.1038/sj.onc.1210022
Chen ZY et al (2005) Destabilization of Kruppel-like factor 4 protein in response to serum stimulation involves the ubiquitin-proteasome pathway. Can Res 65(22):10394–10400
doi: 10.1158/0008-5472.CAN-05-2059
Gamper AM et al (2012) Regulation of KLF4 turnover reveals an unexpected tissue-specific role of pVHL in tumorigenesis. Mol Cell 45(2):233–243
pubmed: 22284679 pmcid: 3982234 doi: 10.1016/j.molcel.2011.11.031
Pérez-Monter C et al (2011) The Krüppel-like factor 4 controls biosynthesis of thyrotropin-releasing hormone during hypothalamus development. Mol Cell Endocrinol 333(2):127–133
pubmed: 21182892 doi: 10.1016/j.mce.2010.12.020
Li H et al (2017) Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci Rep 7(1):1–10
Cui DM et al (2017) KLF 4 Knockdown attenuates TBI-induced neuronal damage through p53 and JAK-STAT 3 signaling. CNS Neurosci Ther 23(2):106–118
pubmed: 27671232 doi: 10.1111/cns.12633
Ahn M et al (2015) Immunohistochemical study of Krüppel-like factor 4 in the spinal cords of rats with experimental autoimmune encephalomyelitis. Acta Histochem 117(6):521–527
pubmed: 25944743 doi: 10.1016/j.acthis.2015.03.012
Zare-Chahoki A et al (2021) Inflammation in an animal model of multiple sclerosis leads to MicroRNA-25–3p dysregulation associated with inhibition of Pten and Klf4. Iran J Aller, Asthma Immunol 326(5950):298–301
Moore DL et al (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326(5950):298–301
pubmed: 19815778 pmcid: 2882032 doi: 10.1126/science.1175737
Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegen 4:1–9
doi: 10.1186/s40035-015-0042-0
Hirsch EC, Standaert DG (2021) Ten unsolved questions about neuroinflammation in Parkinson’s disease. Mov Disord 36(1):16–24
pubmed: 32357266 doi: 10.1002/mds.28075
Song GJ, Suk K (2017) Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Front Aging Neurosci 9:139
pubmed: 28555105 pmcid: 5430023 doi: 10.3389/fnagi.2017.00139
Kao Y-C et al (2019) High fat diet suppresses peroxisome proliferator-activated receptors and reduces dopaminergic neurons in the substantia nigra. Int J Mol Sci 21(1):207
pubmed: 31892244 pmcid: 6981702 doi: 10.3390/ijms21010207
Zhang B et al (2019) Targeting MAPK pathways by naringenin modulates microglia M1/M2 polarization in lipopolysaccharide-stimulated cultures. Front Cell Neurosci 12:531
pubmed: 30687017 pmcid: 6336899 doi: 10.3389/fncel.2018.00531
Xu N et al (2017) Spared nerve injury increases the expression of microglia M1 markers in the prefrontal cortex of rats and provokes depression-like behaviors. Front Neurosci 11:209
pubmed: 28458629 pmcid: 5394168 doi: 10.3389/fnins.2017.00209
Therajaran P et al (2020) Microglial polarization in posttraumatic epilepsy: potential mechanism and treatment opportunity. Epilepsia 61(2):203–215
pubmed: 31943156 doi: 10.1111/epi.16424
Clausen B et al (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277
pubmed: 10621974 doi: 10.1023/A:1008942828960
Sahu SK et al (2017) MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection. PLoS Pathog 13(5):e1006410
pubmed: 28558034 pmcid: 5466338 doi: 10.1371/journal.ppat.1006410
Vergadi E et al (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol 198(3):1006–1014
pubmed: 28115590 doi: 10.4049/jimmunol.1601515
Dong X et al (2019) MicroRNA-9-5p downregulates Klf4 and influences the progression of hepatocellular carcinoma via the AKT signaling pathway. Int J Mol Med 43(3):1417–1429
pubmed: 30664155 pmcid: 6365078
Lv S et al (2018) Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4. Oncogene 37(10):1354–1368
pubmed: 29269867 doi: 10.1038/s41388-017-0026-x
El-Deeb NK et al (2022) Crosstalk between PI3K/AKT/KLF4 signaling and microglia M1/M2 polarization as a novel mechanistic approach towards flibanserin repositioning in Parkinson’s disease. Int Immunopharmacol 112:109191
pubmed: 36055034 doi: 10.1016/j.intimp.2022.109191
Kaushik DK et al (2010) Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflammation 7:1–20
doi: 10.1186/1742-2094-7-68
Hamik A et al (2007) Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 282(18):13769–13779
pubmed: 17339326 doi: 10.1074/jbc.M700078200
Shen B et al (2009) Kruppel-like factor 4 is a novel mediator of Kallistatin in inhibiting endothelial inflammation via increased endothelial nitric-oxide synthase expression. J Biol Chem 284(51):35471–35478
pubmed: 19858207 pmcid: 2790976 doi: 10.1074/jbc.M109.046813
Alder JK et al (2008) Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol 180(8):5645–5652
pubmed: 18390749 doi: 10.4049/jimmunol.180.8.5645
Feinberg MW et al (2005) Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem 280(46):38247–38258
pubmed: 16169848 doi: 10.1074/jbc.M509378200
Wang C et al (2016) Correlation of A2bAR and KLF4/KLF15 with obesity-dyslipidemia induced inflammation in Uygur population. Mediators Inflamm 21:56–67
Li L et al (2022) Long noncoding RNA BACE1-antisense transcript plays a critical role in Parkinson’s disease via microRNA-214-3p/Cell death-inducing p53-target protein 1 axis. Bioengineered 13(4):10889–10901
pubmed: 35481549 pmcid: 9208522 doi: 10.1080/21655979.2022.2066750
Zhou S et al (2020) Knockdown of SNHG14 alleviates MPP+-induced injury in the cell model of Parkinson’s disease by targeting the miR-214-3p/KLF4 axis. Front Neurosci 14:930
pubmed: 33071725 pmcid: 7536369 doi: 10.3389/fnins.2020.00930
Hong S et al (2019) Brefeldin A–sensitive ER-Golgi vesicle trafficking contributes to NLRP3-dependent caspase-1 activation. FASEB J 33(3):4547–4558
pubmed: 30592629 doi: 10.1096/fj.201801585R
Padilla PI et al (2004) Nuclear localization and molecular partners of BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors. Proc Natl Acad Sci 101(9):2752–2757
pubmed: 14973189 pmcid: 365693 doi: 10.1073/pnas.0307345101
You Z et al (2022) The novel KLF4/BIG1 regulates LPS-mediated neuro-inflammation and migration in BV2 cells via PI3K/Akt/NF-kB signaling pathway. Neuroscience 488:102–111
pubmed: 35090882 doi: 10.1016/j.neuroscience.2022.01.014
Zamanian M et al (2017) Short-term effects of troxerutin (vitamin P4) on muscle fatigue and gene expression of Bcl-2 and Bax in the hepatic tissue of rats. Can J Physiol Pharmacol 95(6):708–713
pubmed: 28187266 doi: 10.1139/cjpp-2016-0653
Zamanian MY et al (2023) Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson’s disease: an overview and update on new developments. Mol Biol Rep 50(6):5455–5464
Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9(8):445–454
pubmed: 23857047 doi: 10.1038/nrneurol.2013.132
Hernandez DG, Reed X, Singleton AB (2016) Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem 139:59–74
pubmed: 27090875 pmcid: 5155439 doi: 10.1111/jnc.13593
Bozi M et al (2014) Genetic assessment of familial and early-onset Parkinson’s disease in a Greek population. Eur J Neurol 21(7):963–968
pubmed: 24313877 doi: 10.1111/ene.12315
Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42
pubmed: 23064436 doi: 10.1016/j.nbd.2012.10.011
Fukui M, Zhu BT (2010) Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical role in protection against glutamate-induced oxidative stress and cell death in HT22 neuronal cells. Free Radical Biol Med 48(6):821–830
doi: 10.1016/j.freeradbiomed.2009.12.024
Zhang C et al (2019) γ-Oryzanol mitigates oxidative stress and prevents mutant SOD1-related neurotoxicity in Drosophila and cell models of amyotrophic lateral sclerosis. Neuropharmacology 160:107777
pubmed: 31521619 doi: 10.1016/j.neuropharm.2019.107777
Chen J et al (2013) Induction of KLF4 contributes to the neurotoxicity of MPP+ in M17 cells: a new implication in Parkinson’s disease. J Mol Neurosci 51(1):109–117
pubmed: 23370975 doi: 10.1007/s12031-013-9961-3
Robinson P, Coveñas R, Muñoz M (2023) Combination therapy of chemotherapy or radiotherapy and the neurokinin-1 receptor antagonist aprepitant: a new antitumor strategy? Curr Med Chem 30(16):1798–1812
pubmed: 35959620 doi: 10.2174/0929867329666220811152602
Martinez AN, Philipp MT (2016) Substance P and antagonists of the neurokinin-1 receptor in neuroinflammation associated with infectious and neurodegenerative diseases of the central nervous system. J Neurol Neuromed 1(2):29
doi: 10.29245/2572.942X/2016/2.1020
Thornton E, Vink R (2015) Substance P and its tachykinin NK1 receptor: a novel neuroprotective target for Parkinson’s disease. Neural Regen Res 10(9):1403
pubmed: 26604896 pmcid: 4625501 doi: 10.4103/1673-5374.165505
Thornton E et al (2014) The NK1 receptor antagonist N-acetyl-L-tryptophan reduces dyskinesia in a hemi-parkinsonian rodent model. Parkinsonism Relat Disord 20(5):508–513
pubmed: 24637127 doi: 10.1016/j.parkreldis.2014.02.008
Yoshizumi M et al (2012) The role of big mitogen-activated protein kinase 1 (BMK1)/extracellular signal-regulated kinase 5 (ERK5) in the pathogenesis and progression of atherosclerosis. J Pharmacol Sci 120(4):259–263
pubmed: 23165802 doi: 10.1254/jphs.12R11CP
Drew BA, Burow ME, Beckman BS (2012) MEK5/ERK5 pathway: the first fifteen years. Biochim Biophys Acta (BBA)-Rev Cancer 1825(1):37–48
doi: 10.1016/j.bbcan.2011.10.002
See WZC, Naidu R, Tang KS (2022) Cellular and molecular events leading to paraquat-induced apoptosis: mechanistic insights into Parkinson’s disease pathophysiology. Mol Neurobiol 59(6):3353–3369
pubmed: 35306641 pmcid: 9148284 doi: 10.1007/s12035-022-02799-2
Zhu JH et al (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13(4):473–481
pubmed: 14655753 doi: 10.1111/j.1750-3639.2003.tb00478.x
Wood-Kaczmar A et al (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE 3(6):e2455
pubmed: 18560593 pmcid: 2413012 doi: 10.1371/journal.pone.0002455
Zheng Z et al (2022) Mechanisms of autoimmune cell in DA neuron apoptosis of Parkinson’s disease: recent advancement. Oxid Med Cell Long 3(6):e2455
Viswanath V et al (2001) Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease. J Neurosci 21(24):9519–9528
pubmed: 11739563 pmcid: 6763046 doi: 10.1523/JNEUROSCI.21-24-09519.2001
Erekat NS (2018) Apoptosis and its ROLE in Parkinson’s disease. Exon Publications 21(24):9519–9528
Yan W et al (2018) LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun 496(4):1019–1024
pubmed: 29287722 doi: 10.1016/j.bbrc.2017.12.149
Li K, Wang Z (2023) lncRNA NEAT1: key player in neurodegenerative diseases. Ageing Res Rev 86:101878
Liu J et al (2020) Long non-coding RNA NEAT1 mediates MPTP/MPP+-induced apoptosis via regulating the miR-124/KLF4 axis in Parkinson’s disease. Open Life Sci 15(1):665–676
pubmed: 33817255 pmcid: 7747504 doi: 10.1515/biol-2020-0069
Hadar A et al (2018) SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease. Sci Rep 8(1):8465
pubmed: 29855513 pmcid: 5981646 doi: 10.1038/s41598-018-26547-6
Song Y, Liu Y, Chen X (2018) MiR-212 attenuates MPP+-induced neuronal damage by targeting KLF4 in SH-SY5Y cells. Yonsei Med J 59(3):416–424
pubmed: 29611404 pmcid: 5889994 doi: 10.3349/ymj.2018.59.3.416
Zhao J et al (2015) MicroRNA-7: a promising new target in cancer therapy. Cancer Cell Int 15(1):1–8
doi: 10.1186/s12935-015-0259-0
Kalinowski FC et al (2014) microRNA-7: a tumor suppressor miRNA with therapeutic potential. Int J Biochem Cell Biol 54:312–317
pubmed: 24907395 doi: 10.1016/j.biocel.2014.05.040
Kong B et al (2016) microRNA-7 protects against 1-methyl-4-phenylpyridinium iodide-induced cell apoptosis in SH-SY5Y cells by directly targeting Krüpple-like factor 4. DNA Cell Biol 35(5):217–225
pubmed: 27003614 doi: 10.1089/dna.2015.3097
Aguirre M et al (2023) Application of the Yamanaka transcription factors Oct4, Sox2, Klf4, and c-Myc from the laboratory to the clinic. Genes 14(9):1697
pubmed: 37761837 pmcid: 10531188 doi: 10.3390/genes14091697

Auteurs

Mohammad Yasin Zamanian (MY)

Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.

Maryam Golmohammadi (M)

School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.

Rana Sherdil Amin (RS)

Sharif Medical & Dental College, Lahore, Pakistan.

Ghadeer Sabah Bustani (GS)

College of Dentistry, The Islamic University, Najaf, Iraq.

Rosario Mireya Romero-Parra (RM)

General Studies, Universidad Continental, Lima, Perú.

Rahman S Zabibah (RS)

Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.

Tuba Oz (T)

Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland.

Abduladheem Turki Jalil (AT)

Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.

Afsaneh Soltani (A)

School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran. afsanehstn74@gmail.com.

Małgorzata Kujawska (M)

Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland. kujawska@ump.edu.pl.

Classifications MeSH