Enabling late-stage drug diversification by high-throughput experimentation with geometric deep learning.


Journal

Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734

Informations de publication

Date de publication:
23 Nov 2023
Historique:
received: 21 10 2022
accepted: 03 10 2023
medline: 24 11 2023
pubmed: 24 11 2023
entrez: 23 11 2023
Statut: aheadofprint

Résumé

Late-stage functionalization is an economical approach to optimize the properties of drug candidates. However, the chemical complexity of drug molecules often makes late-stage diversification challenging. To address this problem, a late-stage functionalization platform based on geometric deep learning and high-throughput reaction screening was developed. Considering borylation as a critical step in late-stage functionalization, the computational model predicted reaction yields for diverse reaction conditions with a mean absolute error margin of 4-5%, while the reactivity of novel reactions with known and unknown substrates was classified with a balanced accuracy of 92% and 67%, respectively. The regioselectivity of the major products was accurately captured with a classifier F-score of 67%. When applied to 23 diverse commercial drug molecules, the platform successfully identified numerous opportunities for structural diversification. The influence of steric and electronic information on model performance was quantified, and a comprehensive simple user-friendly reaction format was introduced that proved to be a key enabler for seamlessly integrating deep learning and high-throughput experimentation for late-stage functionalization.

Identifiants

pubmed: 37996732
doi: 10.1038/s41557-023-01360-5
pii: 10.1038/s41557-023-01360-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 205321_182176
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 205321_182176

Informations de copyright

© 2023. The Author(s).

Références

Jana, R., Begam, H. M. & Dinda, E. The emergence of the C–H functionalization strategy in medicinal chemistry and drug discovery. Chem. Commun. 57, 10842–10866 (2021).
doi: 10.1039/D1CC04083A
Werner, M. et al. Seamless integration of dose-response screening and flow chemistry: efficient generation of structure–activity relationship data of β-secretase (BACE1) inhibitors. Angew. Chem. Int. Ed. 53, 1704–1708 (2014).
doi: 10.1002/anie.201309301
Parry, D. M. Closing the loop: developing an integrated design, make, and test platform for discovery. ACS Med. Chem. Lett. 10, 848–856 (2019).
pubmed: 31223437 pmcid: 6580368 doi: 10.1021/acsmedchemlett.9b00095
Sutherland, J. D. et al. An automated synthesis–purification–sample-management platform for the accelerated generation of pharmaceutical candidates. J. Lab. Autom. 19, 176–182 (2014).
pubmed: 24352687 doi: 10.1177/2211068213516325
Schneider, P. et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 19, 353–364 (2020).
pubmed: 31801986 doi: 10.1038/s41573-019-0050-3
Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).
pubmed: 23609086 doi: 10.1038/nchem.1607
Nippa, D. F. et al. Late-stage functionalization and its impact on modern drug discovery: medicinal chemistry and chemical biology highlights. Chimia 76, 258–258 (2022).
doi: 10.2533/chimia.2022.258
Hartwig, J. F. Borylation and silylation of C–H bonds: a platform for diverse C–H bond functionalizations. Acc. Chem. Res. 45, 864–873 (2012).
pubmed: 22075137 doi: 10.1021/ar200206a
Wang, M. & Shi, Z. Methodologies and strategies for selective borylation of C–Het and C–C bonds. Chem. Rev. 120, 7348–7398 (2020).
pubmed: 32597639 doi: 10.1021/acs.chemrev.9b00384
Lasso, J. D., Castillo-Pazos, D. J. & Li, C.-J. Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. Chem. Soc. Rev. 50, 10955–10982 (2021).
pubmed: 34382989 doi: 10.1039/D1CS00380A
Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).
pubmed: 26507237 doi: 10.1039/C5CS00628G
Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).
pubmed: 37117588 doi: 10.1038/s41570-021-00300-6
Stepan, A. F. et al. Late-stage microsomal oxidation reduces drug–drug interaction and identifies phosphodiesterase 2A inhibitor PF-06815189. ACS Med. Chem. Lett. 9, 68–72 (2018).
pubmed: 29456790 pmcid: 5807869 doi: 10.1021/acsmedchemlett.7b00343
Halperin, S. D., Fan, H., Chang, S., Martin, R. E. & Britton, R. A convenient photocatalytic fluorination of unactivated C–H bonds. Angew. Chem. Int. Ed. 126, 4778–4781 (2014).
doi: 10.1002/ange.201400420
Friis, S. D., Johansson, M. J. & Ackermann, L. Cobalt-catalysed C–H methylation for late-stage drug diversification. Nat. Chem. 12, 511–519 (2020).
pubmed: 32472105 doi: 10.1038/s41557-020-0475-7
Dreher, S. D., Dormer, P. G., Sandrock, D. L. & Molander, G. A. Efficient cross-coupling of secondary alkyltrifluoroborates with aryl chlorides reaction discovery using parallel microscale experimentation. J. Am. Chem. Soc. 130, 9257–9259 (2008).
pubmed: 18582050 pmcid: 2593853 doi: 10.1021/ja8031423
Bellomo, A. et al. Rapid catalyst identification for the synthesis of the pyrimidinone core of HIV integrase inhibitors. Angew. Chem. Int. Ed. 124, 7018–7021 (2012).
doi: 10.1002/ange.201201720
Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).
pubmed: 25554781 doi: 10.1126/science.1259203
Shevlin, M. Practical high-throughput experimentation for chemists. ACS Med. Chem. Lett. 8, 601–607 (2017).
pubmed: 28626518 pmcid: 5467193 doi: 10.1021/acsmedchemlett.7b00165
Krska, S. W., DiRocco, D. A., Dreher, S. D. & Shevlin, M. The evolution of chemical high-throughput experimentation to address challenging problems in pharmaceutical synthesis. Acc. Chem. Res. 50, 2976–2985 (2017).
pubmed: 29172435 doi: 10.1021/acs.accounts.7b00428
Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process. Res. Dev. 23, 1213–1242 (2019).
doi: 10.1021/acs.oprd.9b00140
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
pubmed: 26978244 pmcid: 4792175 doi: 10.1038/sdata.2016.18
Coley, C. W., Green, W. H. & Jensen, K. F. Machine learning in computer-aided synthesis planning. Acc. Chem. Res. 51, 1281–1289 (2018).
pubmed: 29715002 doi: 10.1021/acs.accounts.8b00087
Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).
pubmed: 27147027 doi: 10.1038/nature17439
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In International Conference on Machine Learning, 1263–1272 (PMLR, 2017).
Unke, O. T. & Meuwly, M. PhysNet: a neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).
pubmed: 31042390 doi: 10.1021/acs.jctc.9b00181
Isert, C., Kromann, J. C., Stiefl, N., Schneider, G. & Lewis, R. A. Machine learning for fast, quantum mechanics-based approximation of drug lipophilicity. ACS Omega 8, 2046–2056 (2023).
pubmed: 36687099 pmcid: 9850743 doi: 10.1021/acsomega.2c05607
Isert, C., Atz, K. & Schneider, G. Structure-based drug design with geometric deep learning. Curr. Opin. Struct. Biol. 79, 102548 (2023).
pubmed: 36842415 doi: 10.1016/j.sbi.2023.102548
Segler, M. H., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).
pubmed: 29595767 doi: 10.1038/nature25978
Shen, Y. et al. Automation and computer-assisted planning for chemical synthesis. Nat. Rev. Methods Prim. 1, 23 (2021).
doi: 10.1038/s43586-021-00022-5
Atz, K., Grisoni, F. & Schneider, G. Geometric deep learning on molecular representations. Nat. Mach. Intell. 3, 1023–1032 (2021).
doi: 10.1038/s42256-021-00418-8
Somnath, V. R., Bunne, C., Coley, C., Krause, A. & Barzilay, R. Learning graph models for retrosynthesis prediction. In Advances in Neural Information Processing Systems (NeurIPS), 34, 9405–9415, https://proceedings.neurips.cc/paper/2021/hash/4e2a6330465c8ffcaa696a5a16639176-Abstract.html (2021).
Guan, Y. et al. Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors. Chem. Sci. 12, 2198–2208 (2021).
doi: 10.1039/D0SC04823B
Jin, W., Coley, C., Barzilay, R. & Jaakkola, T. Predicting organic reaction outcomes with Weisfeiler-Lehman network. In Advances in Neural Information Processing Systems (NeurIPS), 30, https://papers.nips.cc/paper_files/paper/2017/hash/ced556cd9f9c0c8315cfbe0744a3baf0-Abstract.html (2017).
Schwaller, P. et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent. Sci. 5, 1572–1583 (2019).
pubmed: 31572784 pmcid: 6764164 doi: 10.1021/acscentsci.9b00576
Thakkar, A., Chadimová, V., Bjerrum, E. J., Engkvist, O. & Reymond, J.-L. Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from AI driven retrosynthetic planning. Chem. Sci. 12, 3339–3349 (2021).
pubmed: 34164104 pmcid: 8179384 doi: 10.1039/D0SC05401A
Heinen, S., von Rudorff, G. F. & von Lilienfeld, O. A. Toward the design of chemical reactions: machine learning barriers of competing mechanisms in reactant space. J. Chem. Phys. 155, 064105 (2021).
pubmed: 34391351 doi: 10.1063/5.0059742
Bragato, M., von Rudorff, G. F. & von Lilienfeld, O. A. Data enhanced Hammett-equation: reaction barriers in chemical space. Chem. Sci. 11, 11859–11868 (2020).
pubmed: 34094415 pmcid: 8163012 doi: 10.1039/D0SC04235H
von Rudorff, G. F., Heinen, S. N., Bragato, M. & von Lilienfeld, O. A. Thousands of reactants and transition states for competing E2 and S
doi: 10.1088/2632-2153/aba822
Stuyver, T. & Coley, C. W. Quantum chemistry-augmented neural networks for reactivity prediction: performance, generalizability, and explainability. J. Chem. Phys. 156, 084104 (2022).
pubmed: 35232175 doi: 10.1063/5.0079574
Qiu, J. et al. Selective functionalization of hindered meta-C–H bond of o-alkylaryl ketones promoted by automation and deep learning. Chem 8, 3275–3287 (2022).
King-Smith, E. et al. Predictive Minisci and P450 late stage functionalization with transfer learning. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2022-7ddw5 (2022).
Hoque, A. & Sunoj, R. B. Deep learning for enantioselectivity predictions in catalytic asymmetric β-C–H bond activation reactions. Digit. Discov. 1, 926–940 (2022).
doi: 10.1039/D2DD00084A
Boni, Y. T., Cammarota, R. C., Liao, K., Sigman, M. S. & Davies, H. M. Leveraging regio- and stereoselective C(sp
pubmed: 35977100 doi: 10.1021/jacs.2c04383
Xu, L.-C. et al. Enantioselectivity prediction of pallada-electrocatalysed C–H activation using transition state knowledge in machine learning. Nat. Synth. 2, 321–330 (2023).
Meuwly, M. Machine learning for chemical reactions. Chem. Rev. 121, 10218–10239 (2021).
pubmed: 34097378 doi: 10.1021/acs.chemrev.1c00033
Caldeweyher, E. et al. Hybrid Machine Learning Approach to Predict the Site Selectivity of Iridium-Catalyzed Arene Borylation. J. Am. Chem. Soc. 145, 17367–17376 (2023).
pubmed: 37523755 doi: 10.1021/jacs.3c04986
Kutchukian, P. S. et al. Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016).
pubmed: 28660032 pmcid: 5477042 doi: 10.1039/C5SC04751J
Baek, J., Kang, M. & Hwang, S. J. Accurate learning of graph representations with graph multiset pooling. In International Conference on Learning Representations (ICLR) (2021).
Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).
pubmed: 20426451 doi: 10.1021/ci100050t
Wiest, O. et al. On the use of real-world datasets for reaction yield prediction. Chem. Sci. 14, 4997–5005 (2023).
Yin, Q., Klare, H. F. & Oestreich, M. Catalytic Friedel-Crafts C–H borylation of electron-rich arenes: dramatic rate acceleration by added alkenes. Angew. Chem. Int. Ed. 56, 3712–3717 (2017).
doi: 10.1002/anie.201611536
Lv, J. et al. Metal-free directed sp
pubmed: 31723273 doi: 10.1038/s41586-019-1640-2
Feng, Y. et al. Total synthesis of verruculogen and fumitremorgin A enabled by ligand-controlled C–H borylation. J. Am. Chem. Soc. 137, 10160–10163 (2015).
pubmed: 26256033 pmcid: 4777340 doi: 10.1021/jacs.5b07154
Bisht, R., Hoque, M. E. & Chattopadhyay, B. Amide effects in C–H activation: noncovalent interactions with L-shaped ligand for meta borylation of aromatic amides. Angew. Chem. Int. Ed. 57, 15762–15766 (2018).
doi: 10.1002/anie.201809929
Kearnes, S. M. et al. The open reaction database. J. Am. Chem. Soc. 143, 18820–18826 (2021).
pubmed: 34727496 doi: 10.1021/jacs.1c09820
Tomczak, J. et al. UDM (unified data model) for chemical reactions – past, present and future. Pure Appl. Chem. https://doi.org/10.1515/pac-2021-3013 (2022).
Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992–2002 (2011).
pubmed: 21336364 doi: 10.1039/c0cs00156b
Wright, J. S., Scott, P. J. & Steel, P. G. Iridium-catalysed C–H borylation of heteroarenes: balancing steric and electronic regiocontrol. Angew. Chem. Int. Ed. 60, 2796–2821 (2021).
doi: 10.1002/anie.202001520
Meyers, J., Carter, M., Mok, N. Y. & Brown, N. On the origins of three-dimensionality in drug-like molecules. Future Med. Chem. 8, 1753–1767 (2016).
pubmed: 27572621 doi: 10.4155/fmc-2016-0095
Dreher, S. D. & Krska, S. W. Chemistry informer libraries: conception, early experience, and role in the future of cheminformatics. Acc. Chem. Res. 54, 1586–1596 (2021).
pubmed: 33723992 doi: 10.1021/acs.accounts.0c00760
Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. In Proceedings of the 38th International Conference on Machine Learning (ICML) 9323–9332 (2021).
Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. In International Conference on Learning Representations (ICLR) (2019).
Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (NeurIPS), 32, 8026–8037, https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html (2019).
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at arXiv https://doi.org/10.48550/arXiv.1412.6980 (2014).
Atz, K., Isert, C., Böcker, M. N., Jiménez-Luna, J. & Schneider, G. Δ-Quantum machine-learning for medicinal chemistry. Phys. Chem. Chem. Phys. 24, 10775–10783 (2022).
pubmed: 35470831 pmcid: 9093086 doi: 10.1039/D2CP00834C
Isert, C., Atz, K., Jiménez-Luna, J. & Schneider, G. QMugs, quantum mechanical properties of drug-like molecules. Sci. Data 9, 273 (2022).
pubmed: 35672335 pmcid: 9174255 doi: 10.1038/s41597-022-01390-7
Neeser, R., Isert, C., Stuyver, T., Schneider, G. & Coley, C. QMugs 1.1: quantum mechanical properties of organic compounds commonly encountered in reactivity datasets. SSRN http://doi.org/10.2139/ssrn.4363768 (2023).
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
pubmed: 18989472 doi: 10.1039/b810189b
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
pubmed: 16240044 doi: 10.1039/b508541a
Mulliken, R. S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23, 1833–1840 (1955).
doi: 10.1063/1.1740588
Landrum, G. RDKit: Open-Source Cheminformatics Software, accessed September 2020; http://www.rdkit.org
Rappé, A. K., Casewit, C. J., Colwell, K., Goddard III, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).
doi: 10.1021/ja00051a040

Auteurs

David F Nippa (DF)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.

Kenneth Atz (K)

Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.

Remo Hohler (R)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Alex T Müller (AT)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Andreas Marx (A)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Christian Bartelmus (C)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Georg Wuitschik (G)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Irene Marzuoli (I)

Process Chemistry and Catalysis (PCC), F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Vera Jost (V)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Jens Wolfard (J)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Martin Binder (M)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Antonia F Stepan (AF)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

David B Konrad (DB)

Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany. david.konrad@cup.lmu.de.

Uwe Grether (U)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland. uwe.grether@roche.com.

Rainer E Martin (RE)

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland. rainer_e.martin@roche.com.

Gisbert Schneider (G)

Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland. gisbert@ethz.ch.
ETH Singapore SEC Ltd, Singapore, Singapore. gisbert@ethz.ch.

Classifications MeSH