Complement factor H attenuates TNF-α-induced inflammation by upregulating EIF3C in rheumatoid arthritis.
Humans
Arthritis, Rheumatoid
/ drug therapy
Cell Proliferation
Cells, Cultured
Complement Factor H
/ genetics
Cytokines
/ metabolism
Fibroblasts
/ metabolism
Inflammation
/ metabolism
Interleukin-6
/ metabolism
Interleukin-8
/ metabolism
Synovial Membrane
/ metabolism
Tumor Necrosis Factor-alpha
/ metabolism
Complement factor H
Eukaryotic translation initiation factor 3 subunit C
Fibroblast-like synoviocytes
Pyroptosis
Rheumatoid arthritis
Journal
Journal of translational medicine
ISSN: 1479-5876
Titre abrégé: J Transl Med
Pays: England
ID NLM: 101190741
Informations de publication
Date de publication:
23 Nov 2023
23 Nov 2023
Historique:
received:
05
09
2023
accepted:
12
11
2023
medline:
27
11
2023
pubmed:
24
11
2023
entrez:
24
11
2023
Statut:
epublish
Résumé
To explore the role and underlying mechanism of Complement Factor H (CFH) in the peripheral and joint inflammation of RA patients. The levels of CFH in the serum and synovial fluid were determined by ELISA. The pyroptosis of monocytes was determined by western blotting and flow cytometry. The inflammation cytokine release was tested by ELISA. The cell migration and invasion ability of fibroblast-like synoviocytes (FLS) were tested by Wound healing Assay and transwell assay, respectively. The potential target of CFH was identified by RNA sequencing. CFH levels were significantly elevated in the serum and synovial fluid from RA and associated with high sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), and disease activity score 28 (DAS28). TNF-α could inhibit CFH expression, and CFH combined with TNF-α significantly decreased cell death, cleaved-caspase 3, gasdermin E N-terminal (GSDME-N), and inflammatory cytokines release (IL-1β and IL-6) of RA-derived monocytes. Stimulated with TNF-α increased CFH levels in RA FLS and CFH inhibits the migration, invasion, and TNF-α-induced production of inflammatory mediators, including proinflammatory cytokines (IL-6, IL-8) as well as matrix metalloproteinases (MMPs, MMP1 and MMP3) of RA FLSs. The RNA-seq results showed that CFH treatment induced upregulation of eukaryotic translation initiation factor 3 (EIF3C) in both RA monocytes and FLS. The migration of RA FLSs was promoted and the expressions of IL-6, IL-8, and MMP-3 were enhanced upon EIF3C knockdown under the stimulation of CFH combined with TNF-α. In conclusion, we have unfolded the anti-inflammatory roles of CFH in the peripheral and joints of RA, which might provide a potential therapeutic target for RA patients.
Identifiants
pubmed: 37996918
doi: 10.1186/s12967-023-04730-2
pii: 10.1186/s12967-023-04730-2
pmc: PMC10668393
doi:
Substances chimiques
Complement Factor H
80295-65-4
Cytokines
0
Interleukin-6
0
Interleukin-8
0
Tumor Necrosis Factor-alpha
0
CFH protein, human
0
EIF3C protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
846Subventions
Organisme : National Natural Science Foundation of China
ID : 81971544
Organisme : National Natural Science Foundation of China
ID : 81971545
Organisme : Chinese National Key Technology R&D Program, Ministry of Science and Technology
ID : 2022YFC2504600
Organisme : National High Level Hospital Clinical Research Funding
ID : 2022-PUMCH-B -013
Informations de copyright
© 2023. The Author(s).
Références
Angiogenesis. 2015 Oct;18(4):433-48
pubmed: 26198292
Nature. 2017 Jul 6;547(7661):99-103
pubmed: 28459430
Arthritis Rheumatol. 2022 Mar;74(3):427-440
pubmed: 34480835
J Immunol. 2009 Nov 1;183(9):5928-37
pubmed: 19828624
Immunity. 2021 May 11;54(5):1002-1021.e10
pubmed: 33761330
Autoimmun Rev. 2019 Jul;18(7):706-713
pubmed: 31059844
Autoimmun Rev. 2011 Aug;10(10):617-23
pubmed: 21549221
Nat Rev Rheumatol. 2022 Jul;18(7):415-429
pubmed: 35705856
Eur J Immunol. 1991 Apr;21(4):967-72
pubmed: 1826890
Rheumatology (Oxford). 2016 Dec;55(suppl 2):ii64-ii67
pubmed: 27856663
Arthritis Rheum. 2006 Apr;54(4):1143-50
pubmed: 16572449
Clin Immunol. 2017 Mar;176:107-113
pubmed: 28115292
Ann Rheum Dis. 2009 Jan;68(1):136-42
pubmed: 18276745
Rheumatology (Oxford). 2000 Feb;39(2):189-92
pubmed: 10725071
Oncotarget. 2018 Jan 11;9(17):13193-13205
pubmed: 29568350
J Pharmacol Exp Ther. 2020 Feb;372(2):185-192
pubmed: 31801802
Ann Rheum Dis. 2005 Jul;64(7):1003-8
pubmed: 15958758
Cell Death Dis. 2021 Jan 4;12(1):39
pubmed: 33414445
J Autoimmun. 2020 Jan;106:102336
pubmed: 31601476
Arthritis Rheum. 2008 May;58(5):1248-57
pubmed: 18438840
Nat Immunol. 2019 Jul;20(7):928-942
pubmed: 31061532
Cancer Invest. 2019;37(4-5):199-208
pubmed: 31181967
J Cell Physiol. 2021 May;236(5):3660-3674
pubmed: 33034385
Mol Immunol. 2010 Aug;47(13):2187-97
pubmed: 20580090
Best Pract Res Clin Rheumatol. 2018 Aug;32(4):550-562
pubmed: 31174824
Med Sci Monit. 2017 Aug 30;23:4182-4191
pubmed: 28854163
Dose Response. 2020 Sep 10;18(3):1559325820950061
pubmed: 32973416
Arthritis Res Ther. 2017 Feb 28;19(1):40
pubmed: 28245866
Nat Rev Rheumatol. 2023 Jun;19(6):363-377
pubmed: 37161083
Nat Rev Rheumatol. 2010 Apr;6(4):232-41
pubmed: 20177398
Mol Immunol. 2017 Apr;84:84-106
pubmed: 28216098
Ann Rheum Dis. 2012 Jun;71(6):1004-11
pubmed: 22258493
J Immunol. 2012 Feb 1;188(3):1469-78
pubmed: 22205026
Dis Model Mech. 2018 Mar 23;11(3):
pubmed: 29590637
Rheumatology (Oxford). 2012 Dec;51 Suppl 6:vi5-9
pubmed: 23221588