The chemokines CCL5 and CXCL12 exhibit high-affinity binding to N-terminal peptides of the non-cognate receptors CXCR4 and CCR5, respectively.

CCL5 CCR5 CXCL12 CXCR4 chemokines

Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
23 Nov 2023
Historique:
revised: 16 10 2023
received: 02 08 2023
accepted: 21 11 2023
pubmed: 24 11 2023
medline: 24 11 2023
entrez: 24 11 2023
Statut: aheadofprint

Résumé

CC and CXC chemokines are distinct chemokine subfamilies. CC chemokines usually do not bind CXC-chemokine receptors and vice versa. CCR5 and CXCR4 receptors are activated by CCL5 and CXCL12 chemokines, respectively, and are also used as HIV-1 coreceptors. CCL5 contains one conserved binding site for a sulfated tyrosine residue, whereas CXCL12 is unique in having two additional sites for sulfated/nonsulfated tyrosine residues. In this study, N-terminal (Nt) CXCR4 peptides were found to bind CCL5 with somewhat higher affinities in comparison to those of short Nt-CCR5(8-20) peptides with the same number of sulfated tyrosine residues. Similarly, a long Nt-CCR5(1-27)(

Identifiants

pubmed: 37997026
doi: 10.1111/febs.17013
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Israel Science Foundation
Organisme : Kimmelman Center
Organisme : Clore Institute for High-Field Magnetic Resonance Imaging and Spectroscopy at the Weizmann Institute
Organisme : Leona M. and Harry B. Helmsley Charitable Trust

Informations de copyright

© 2023 Federation of European Biochemical Societies.

Références

Hughes CE & Nibbs RJB (2018) A guide to chemokines and their receptors. FEBS J 285, 2944-2971.
Blanpain C, Doranz BJ, Bondue A, Govaerts C, De Leener A, Vassart G, Doms RW, Proudfoot A & Parmentier M (2003) The core domain of chemokines binds CCR5 extracellular domains while their amino terminus interacts with the transmembrane helix bundle. J Biol Chem 278, 5179-5187.
Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V et al. (2015) Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347, 1117-1122.
Zheng Y, Han GW, Abagyan R, Wu B, Stevens RC, Cherezov V, Kufareva I & Handel TM (2017) Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV. Immunity 46, 1005-1017.e5.
Bhusal RP, Foster SR & Stone MJ (2020) Structural basis of chemokine and receptor interactions: key regulators of leukocyte recruitment in inflammatory responses. Protein Sci 29, 420-432.
Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I et al. (2017) Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Sci Signal 10, eaah5756.
Veldkamp CT, Seibert C, Peterson FC, De la Cruz NB, Haugner JC 3rd, Basnet H, Sakmar TP & Volkman BF (2008) Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal 1, ra4.
Millard CJ, Ludeman JP, Canals M, Bridgford JL, Hinds MG, Clayton DJ, Christopoulos A, Payne RJ & Stone MJ (2014) Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N-terminal region of CCR3 bound to CCL11/eotaxin-1. Structure 22, 1571-1581.
Abayev M, Rodrigues J, Srivastava G, Arshava B, Jaremko L, Jaremko M, Naider F, Levitt M & Anglister J (2018) The solution structure of monomeric CCL5 in complex with a doubly sulfated N-terminal segment of CCR5. FEBS J 285, 1988-2003.
Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, Feinberg EN, Angelini A, Waghray D, Dror RO, Ploegh HL et al. (2015) Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347, 1113-1117.
Zhang H, Chen K, Tan QX, Shao Q, Han S, Zhang CH, Yi CY, Chu XJ, Zhu Y, Xu YC et al. (2021) Structural basis for chemokine recognition and receptor activation of chemokine receptor CCR5. Nat Commun 12, 4151.
Stephens BS, Ngo T, Kufareva I & Handel TM (2020) Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 13, eaay5024.
Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM & Kufareva I (2020) Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. PLoS Biol 18, e3000656.
Farzan M, Vasilieva N, Schnitzler CE, Chung S, Robinson J, Gerard NP, Gerard C, Choe H & Sodroski J (2000) A tyrosine-sulfated peptide based on the N terminus of CCR5 interacts with a CD4-enhanced epitope of the HIV-1 gp120 envelope glycoprotein and inhibits HIV-1 entry. J Biol Chem 275, 33516-33521.
Cormier EG, Persuh M, Thompson DA, Lin SW, Sakmar TP, Olson WC & Dragic T (2000) Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proc Natl Acad Sci USA 97, 5762-5767.
Ziarek JJ, Heroux MS, Veldkamp CT, Peterson FC & Volkman BF (2011) Sulfotyrosine recognition as marker for druggable sites in the extracellular space. Int J Mol Sci 12, 3740-3756.
Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC et al. (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066-1071.
Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP, Gerard C, Sodroski J & Choe H (1999) Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667-676.
Klein P, Pawson T & Tyers M (2003) Mathematical modeling suggests cooperative interactions between a disordered polyvalent ligand and a single receptor site. Curr Biol 13, 1669-1678.
Mittag T, Orlicky S, Choy WY, Tang XJ, Lin H, Sicheri F, Kay LE, Tyers M & Forman-Kay JD (2008) Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci USA 105, 17772-17777.
Kessler N, Akabayov SR, Moseri A, Cohen LS, Sakhapov D, Bolton D, Fridman B, Kay LE, Naider F & Anglister J (2021) Allovalency observed by transferred NOE: interactions of sulfated tyrosine residues in the N-terminal segment of CCR5 with the CCL5 chemokine. FEBS J 288, 1648-1663.
Sanchez J, Huma ZE, Lane JR, Liu XY, Bridgford JL, Payne RJ, Canals M & Stone MJ (2019) Evaluation and extension of the two-site, two-step model for binding and activation of the chemokine receptor CCR1. J Biol Chem 294, 3464-3475.
Veldkamp CT, Seibert C, Peterson FC, Sakmar TP & Volkman BF (2006) Recognition of a CXCR4 sulfotyrosine by the chemokine stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12). J Mol Biol 359, 1400-1409.
Kofuku Y, Yoshiura C, Ueda T, Terasawa H, Hirai T, Tominaga S, Hirose M, Maeda Y, Takahashi H, Terashima Y et al. (2009) Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. J Biol Chem 284, 35240-35250.
Ziarek JJ, Getschman AE, Butler SJ, Taleski D, Stephens B, Kufareva I, Handel TM, Payne RJ & Volkman BF (2013) Sulfopeptide probes of the CXCR4/CXCL12 interface reveal oligomer-specific contacts and chemokine allostery. ACS Chem Biol 8, 1955-1963.
Gozansky EK, Louis JM, Caffrey M & Clore GM (2005) Mapping the binding of the N-terminal extracellular tail of the CXCR4 receptor to stromal cell-derived factor-1alpha. J Mol Biol 345, 651-658.
Abayev M, Srivastava G, Arshava B, Naider F & Anglister J (2017) Detection of intermolecular transferred-NOE interactions in small and medium size protein complexes: RANTES complexed with a CCR5 N-terminal peptide. FEBS J 284, 586-601.
Rizzuto CD, Wyatt R, Hernandez-Ramos N, Sun Y, Kwong PD, Hendrickson WA & Sodroski J (1998) A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280, 1949-1953.
Shaik MM, Peng HQ, Lu JM, Rits-Volloch S, Xu C, Liao MF & Chen B (2019) Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 565, 318-323.
Moseri A, Akabayov SR, Cohen LS, Naider F & Anglister J (2022) Multiple binding modes of an N-terminal CCR5-peptide in complex with HIV-1 gp120. FEBS J 289, 3132-3147.
Proudfoot AEI, Johnson Z, Bonvin P & Handel TM (2017) Glycosaminoglycan interactions with chemokines add complexity to a complex system. Pharmaceuticals (Basel) 10, 70.
Kufareva I, Salanga CL & Handel TM (2015) Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 93, 372-383.
McCornack MA, Cassidy CK & LiWang PJ (2003) The binding surface and affinity of monomeric and dimeric chemokine macrophage inflammatory protein 1 beta for various glycosaminoglycan disaccharides. J Biol Chem 278, 1946-1956.
Laurence JS, Blanpain C, De Leener A, Parmentier M & Li Wang PJ (2001) Importance of basic residues and quaternary structure in the function of MIP-1 beta: CCR5 binding and cell surface sugar interactions. Biochemistry 40, 4990-4999.
Panitz N, Theisgen S, Samsonov SA, Gehrcke JP, Baumann L, Bellmann-Sickert K, Kohling S, Pisabarro MT, Rademann J, Huster D et al. (2016) The structural investigation of glycosaminoglycan binding to CXCL12 displays distinct interaction sites. Glycobiology 26, 1209-1221.
Sadir R, Baleux F, Grosdidier A, Imberty A & Lortat-Jacob H (2001) Characterization of the stromal cell-derived factor-1alpha-heparin complex. J Biol Chem 276, 8288-8296.
Laguri C, Sapay N, Simorre JP, Brutscher B, Imberty A, Gans P & Lortat-Jacob H (2011) 13C-labeled heparan sulfate analogue as a tool to study protein/heparan sulfate interactions by NMR spectroscopy: application to the CXCL12alpha chemokine. J Am Chem Soc 133, 9642-9645.
Vives RR, Imberty A, Sattentau QJ & Lortat-Jacob H (2005) Heparan sulfate targets the HIV-1 envelope glycoprotein gp120 coreceptor binding site. J Biol Chem 280, 21353-21357.
Czaplewski LG, McKeating J, Craven CJ, Higgins LD, Appay V, Brown A, Dudgeon T, Howard LA, Meyers T, Owen J et al. (1999) Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES. Characterization of active disaggregated chemokine variants. J Biol Chem 274, 16077-16084.
Duma L, Haussinger D, Rogowski M, Lusso P & Grzesiek S (2007) Recognition of RANTES by extracellular parts of the CCR5 receptor. J Mol Biol 365, 1063-1075.
Schnur E, Kessler N, Zherdev Y, Noah E, Scherf T, Ding FX, Rabinovich S, Arshava B, Kurbatska V, Leonciks A et al. (2013) NMR mapping of RANTES surfaces interacting with CCR5 using linked extracellular domains. FEBS J 280, 2068-2084.
Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, Arenzana-Seisdedos F, Virelizier JL, Baggiolini M, Sykes BD & Clark-Lewis I (1997) Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 16, 6996-7007.
Veldkamp CT, Peterson FC, Pelzek AJ & Volkman BF (2005) The monomer-dimer equilibrium of stromal cell-derived factor-1 (CXCL 12) is altered by pH, phosphate, sulfate, and heparin. Protein Sci 14, 1071-1081.
Bax A & Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 26, 131-138.
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J & Bax A (1995) Nmrpipe - a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6, 277-293.
Johnson BA (2018) From raw data to protein backbone chemical shifts using NMRFx processing and NMRViewJ analysis. Methods Mol Biol 1688, 257-310.
MathWorks I (1996) MATLAB: The Language of Technical Computing: Computation, Visualization, Programming: Installation Guide for UNIX version 5. Math Works Inc, Natwick, MA.
Waudby CA, Ramos A, Cabrita LD & Christodoulou J (2016) Two-dimensional NMR lineshape analysis. Sci Rep 6, 24826.

Auteurs

Naama Kessler (N)

Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.

Sabine R Akabayov (SR)

Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.

Leah S Cohen (LS)

Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA.
The Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, NY, USA.

Tali Scherf (T)

Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel.

Fred Naider (F)

Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA.
The Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, NY, USA.

Jacob Anglister (J)

Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.

Classifications MeSH