Detection of blasts using flags and cell population data rules on Beckman Coulter DxH 900 hematology analyzer in patients with hematologic diseases.
DxH 900
automated hematology analyzer
blasts
cell population data
flag
rule
Journal
Clinical chemistry and laboratory medicine
ISSN: 1437-4331
Titre abrégé: Clin Chem Lab Med
Pays: Germany
ID NLM: 9806306
Informations de publication
Date de publication:
27 Nov 2023
27 Nov 2023
Historique:
received:
24
08
2023
accepted:
01
11
2023
pubmed:
24
11
2023
medline:
24
11
2023
entrez:
24
11
2023
Statut:
aheadofprint
Résumé
White blood cell (WBC)-related flags are essential for detecting abnormal cells including blasts in automated hematology analyzers (AHAs). Cell population data (CPD) may characterize each WBC population, and customized CPD rules can be also useful for detecting blasts. We evaluated the performance of WBC-related flags, customized CPD rules, and their combination for detecting blasts on the Beckman Coulter DxH 900 AHA (DxH 900, Beckman Coulter, Miami, Florida, USA). In a total of 239 samples from patients with hematologic diseases, complete blood count on DxH 900 and manual slide review (MSR) were conducted. The sensitivity, specificity, and efficiency of the five WBC-related flags, nine customized CPD rules, and their combination were evaluated for detecting blasts, in comparison with MSR. Blasts were detected by MSR in 40 out of 239 (16.7 %) samples. The combination of flags and CPD rules showed the highest sensitivity compared with each of flags and CPD rules for detecting blasts (97.5 vs. 72.5 % vs. 92.5 %). Compared with any flag, the combination of flags and CPD rules significantly reduced false-negative samples from 11 to one for detecting blasts (27.5 vs. 2.5 %, p=0.002). This is the first study that evaluated the performance of both flags and CPD rules on DxH 900. The customized CPD rules as well as the combination of flags and CPD rules outperformed WBC-related flags for detecting blasts on DxH 900. The customized CPD rules can play a complementary role for improving the capability of blast detection on DxH 900.
Identifiants
pubmed: 38000045
pii: cclm-2023-0932
doi: 10.1515/cclm-2023-0932
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 the author(s), published by De Gruyter, Berlin/Boston.
Références
Bain, BJ. Diagnosis from the blood smear. N Engl J Med 2005;353:498–507. https://doi.org/10.1056/nejmra043442 .
doi: 10.1056/nejmra043442
Serrando Querol, M, Nieto-Moragas, J, Marull Arnall, A, Figueras, MD, Jiménez-Romero, O. Evaluation of the new Beckmann Coulter analyzer DxH 900 compared to Sysmex XN20: analytical performance and flagging efficiency. Diagnostics 2021;11:1756. https://doi.org/10.3390/diagnostics11101756 .
doi: 10.3390/diagnostics11101756
Loo, E, Rodrigues Simoes, NJ, Browne, LJ, Mindiola Romero, AE, Kaur, P. Hematology lab waste reduction through implementation of peripheral smear review criteria. Int J Lab Hematol 2023;45:813–5. https://doi.org/10.1111/ijlh.14103 .
doi: 10.1111/ijlh.14103
Gulati, G, Song, J, Florea, AD, Gong, J. Purpose and criteria for blood smear scan, blood smear examination, and blood smear review. Ann Lab Med 2013;33:1–7. https://doi.org/10.3343/alm.2013.33.1.1 .
doi: 10.3343/alm.2013.33.1.1
Gulati, G, Uppal, G, Gong, J. Unreliable automated complete blood count results: causes, recognition, and resolution. Ann Lab Med 2022;42:515–30. https://doi.org/10.3343/alm.2022.42.5.515 .
doi: 10.3343/alm.2022.42.5.515
Hur, M, Cho, JH, Kim, H, Hong, MH, Moon, HW, Yun, YM, et al.. Optimization of laboratory workflow in clinical hematology laboratory with reduced manual slide review: comparison between Sysmex XE-2100 and ABX Pentra DX120. Int J Lab Hematol 2011;33:434–40. https://doi.org/10.1111/j.1751-553x.2011.01306.x .
doi: 10.1111/j.1751-553x.2011.01306.x
Chinudomwong, P, Khongjaroensakun, N, Chatachote, B, Chaothai, N, Paisooksantivatana, K. Improving the efficiency of the autoverification workflow for nucleated red blood cell reporting in the hematology laboratory. Int J Lab Hematol 2021;43:1373–8. https://doi.org/10.1111/ijlh.13641 .
doi: 10.1111/ijlh.13641
Martinez-Iribarren, A, Tejedor, X, Sala SanjaumeÀ, Leis, A, Doladé Botias, M, Morales-Indiano, C. Performance evaluation of the new hematology analyzer UniCel DxH 900. Int J Lab Hematol 2021;43:623–31. https://doi.org/10.1111/ijlh.13448 .
doi: 10.1111/ijlh.13448
Kim, H, Hur, M, Choi, SG, Moon, HW, Yun, YM, Hwang, HS, et al.. Performance evaluation of Sysmex XN hematology analyzer in umbilical cord blood: a comparison study with Sysmex XE-2100. Clin Chem Lab Med 2014;52:1771–9. https://doi.org/10.1515/cclm-2014-0392 .
doi: 10.1515/cclm-2014-0392
Urrechaga, E. Reviewing the value of leukocytes cell population data (CPD) in the management of sepsis. Ann Transl Med 2020;8:953. https://doi.org/10.21037/atm-19-3173 .
doi: 10.21037/atm-19-3173
Lapić, I, Brenčić, T, Rogić, D, Lukić, M, Lukić, I, Kovačić, M, et al.. Cell population data: could a routine hematology analyzer aid in the differential diagnosis of COVID-19? Int J Lab Hematol 2021;43:e64–7. https://doi.org/10.1111/ijlh.13368 .
doi: 10.1111/ijlh.13368
Syed-Abdul, S, Firdani, RP, Chung, HJ, Uddin, M, Hur, M, Park, JH, et al.. Artificial intelligence based models for screening of hematologic malignancies using cell population data. Sci Rep 2020;10:4583. https://doi.org/10.1038/s41598-020-61247-0 .
doi: 10.1038/s41598-020-61247-0
Durrieu, F. Evaluation of the WBC-differential flagging performances and accuracy of the HORIBA Yumizen H2500 cell counter in oncology patients from a single institution. Int J Lab Hematol 2023;45:37–45. https://doi.org/10.1111/ijlh.13983 .
doi: 10.1111/ijlh.13983
Ambayya, A, Sathar, J, Hassan, R. Neoteric algorithm using cell population data (VCS parameters) as a rapid screening tool for haematological disorders. Diagnostics 2021;11:1652. https://doi.org/10.3390/diagnostics11091652 .
doi: 10.3390/diagnostics11091652
Vasse, M, Ballester, MC, Ayaka, D, Sukhachev, D, Delcominette, F, Habarou, F, et al.. Interest of the cellular population data analysis as an aid in the early diagnosis of SARS-CoV-2 infection. Int J Lab Hematol 2021;43:116–22. https://doi.org/10.1111/ijlh.13312 .
doi: 10.1111/ijlh.13312
Aguirre, U, Urrechaga, E. Diagnostic performance of machine learning models using cell population data for the detection of sepsis: a comparative study. Clin Chem Lab Med 2022;61:356–65. https://doi.org/10.1515/cclm-2022-0713 .
doi: 10.1515/cclm-2022-0713
Hoffmann, JJML. Cell population data: much more to explore. Clin Chem Lab Med 2022;61:377–9. https://doi.org/10.1515/cclm-2022-1173 .
doi: 10.1515/cclm-2022-1173
Çevlik, T, Kaya, Ö, Gül, F, Turkal, R, İnanç, N, Direskeneli, H, et al.. Evaluation of the diagnostic value of cell population data in sepsis in comparison to localized infection, chronic inflammation, and noninfectious inflammation Cases. J Intensive Care Med 2023;38:382–90. https://doi.org/10.1177/08850666221127185 .
doi: 10.1177/08850666221127185
Clinical and Laboratory Standards Institute (CLSI) . Reference leukocytes (WBC) differential count (proportional) and evaluation of instrumental methods: approval standard , 2nd ed. CLSI Document H20-A2. Wayne, PA: CLSI; 2007.
Instruction for use . UniCel DxH 900 Series with System Manager Software. Coulter Cellular Analysis System Published Version: DxH 900, DxH Slidemaker Stainer II, and DxH 690T – v1. https://www.beckmancoulter.com/download/file/wsr-262438/C06947AD?type=pdf [Accessed 5 Oct 2023].
DxH 900 Hematology Analyzer . Optimized operations through a seamless workflow. https://media.beckmancoulter.com/-/media/diagnostics/products/hematology/dxh-900/docs/pdfs/dxh-900-workflow-for-brochure-glb-ds-87653-en.pdf?rev=971cc8a5c3ce405ea75df0ef246286bb [Accessed 5 July 2023].
DxH 900 Hematology Analyzer . Reliable, reportable WBC differential results through innovative data collection and analysis. https://media.beckmancoulter.com/-/media/diagnostics/products/hematology/cellular-morphometric-parameters/docs/dxh-900-wbc-for-brochure-en.pdf [Accessed 5 July 2023].
Jung, YJ, Kim, JH, Park, YJ, Kahng, J, Lee, H, Lee, KY, et al.. Evaluation of cell population data on the UniCel DxH 800 Coulter Cellular Analysis system as a screening for viral infection in children. Int J Lab Hematol 2012;34:283–9. https://doi.org/10.1111/j.1751-553x.2011.01392.x .
doi: 10.1111/j.1751-553x.2011.01392.x
Barnes, PW, McFadden, SL, Machin, SJ, Simson, E. International Consensus Group for Hematology . The international consensus group for hematology review: suggested criteria for action following automated CBC and WBC differential analysis. Lab Hematol 2005;11:83–90. https://doi.org/10.1532/lh96.05019 .
doi: 10.1532/lh96.05019
Shapiro, SS, Wilk, MB. An analysis of variance test for normality (complete samples). Biometrika 1965;52:591–611. https://doi.org/10.1093/biomet/52.3-4.591 .
doi: 10.1093/biomet/52.3-4.591
Reed, AH, Henry, RJ, Mason, WB. Influence of statistical method used on the resulting estimate of normal range. Clin Chem 1971;17:275–84. https://doi.org/10.1093/clinchem/17.4.275 .
doi: 10.1093/clinchem/17.4.275
Clinical and Laboratory Standards Institute (CLSI) . Assessment of the diagnostic accuracy of laboratory tests using receiver operating characteristic curves , 2nd ed. CLSI guideline EP24-A2. Wayne, PA: CLSI; 2011.
Clinical and Laboratory Standards Institute (CLSI) . Evaluation of qualitative, binary output examination performance , 3rd ed. CLSI Guideline EP12. Wayne, PA: CLSI; 2023.
Ana-Maria Simundić. Diagnostic accuracy. Acta Med Crotica 2006;60 (Suppl 1):93–111.
Cole, TJ. Too many digits: the presentation of numerical data. Arch Dis Child 2015;100:608–9. https://doi.org/10.1136/archdischild-2014-307149 .
doi: 10.1136/archdischild-2014-307149
Kim, H, Hur, M, Lee, GH, Kim, SW, Moon, HW, Yun, YM. Performance of platelet counting in thrombocytopenic samples: comparison between Mindray BC-6800Plus and Sysmex XN-9000. Diagnostics 2021;12:68. https://doi.org/10.3390/diagnostics12010068 .
doi: 10.3390/diagnostics12010068
Comar, SR, Malvezzi, M, Pasquini, R. Evaluation of criteria of manual blood smear review following automated complete blood counts in a large university hospital. Rev Bras Hematol Hemoter 2017;39:306–17. https://doi.org/10.1016/j.bjhh.2017.06.007 .
doi: 10.1016/j.bjhh.2017.06.007
Buoro, S, Mecca, T, Seghezzi, M, Manenti, B, Azzarà, G, Ottomano, C, et al.. Validation rules for blood smear revision after automated hematological testing using Mindray CAL-8000. J Clin Lab Anal 2017;31:e22067. https://doi.org/10.1002/jcla.22067 .
doi: 10.1002/jcla.22067
Pratumvinit, B, Wongkrajang, P, Reesukumal, K, Klinbua, C, Niamjoy, P. Validation and optimization of criteria for manual smear review following automated blood cell analysis in a large university hospital. Arch Pathol Lab Med 2013;137:408–14. https://doi.org/10.5858/arpa.2011-0535-oa .
doi: 10.5858/arpa.2011-0535-oa
Gomez-Rioja, R, Von Meyer, A, Cornes, M, Costelloe, S, Vermeersch, P, Simundic, AM, et al.. Recommendation for the design of stability studies on clinical specimens. Clin Chem Lab Med 2023;61:1708–18. https://doi.org/10.1515/cclm-2023-0221 .
doi: 10.1515/cclm-2023-0221
Jaja Zhu, J, Clauser, S, Freynet, N, Bardet, V. Automated detection of dysplasia: data mining from our hematology analyzers. Diagnostics 2022;12:1556. https://doi.org/10.3390/diagnostics12071556 .
doi: 10.3390/diagnostics12071556
Kim, H, Han, E, Lee, HK, Kim, Y, Han, K. Screening of myelodysplastic syndrome using cell population data obtained from an automatic hematology analyzer. Int J Lab Hematol 2021;43:e54–7. https://doi.org/10.1111/ijlh.13361 .
doi: 10.1111/ijlh.13361
Murphy, PT, Bergin, S, O’Brien, M, Healy, G, Murphy, PW, Glavey, S, et al.. Cell population data from Sysmex XN analyzer and myelodysplastic syndrome. Int J Lab Hematol 2022;44:e138–9. https://doi.org/10.1111/ijlh.13779 .
doi: 10.1111/ijlh.13779