Context-specific functions of chromatin remodellers in development and disease.
Journal
Nature reviews. Genetics
ISSN: 1471-0064
Titre abrégé: Nat Rev Genet
Pays: England
ID NLM: 100962779
Informations de publication
Date de publication:
May 2024
May 2024
Historique:
accepted:
27
09
2023
pubmed:
25
11
2023
medline:
25
11
2023
entrez:
24
11
2023
Statut:
ppublish
Résumé
Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.
Identifiants
pubmed: 38001317
doi: 10.1038/s41576-023-00666-x
pii: 10.1038/s41576-023-00666-x
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
340-361Informations de copyright
© 2023. Springer Nature Limited.
Références
Flaus, A. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).
pubmed: 16738128
pmcid: 1474054
doi: 10.1093/nar/gkl295
Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).
pubmed: 32873422
doi: 10.1016/j.tig.2020.07.011
Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6, a026930 (2016).
pubmed: 27413115
pmcid: 4968166
doi: 10.1101/cshperspect.a026930
Pulice, J. L. & Kadoch, C. Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease. Cold Spring Harb. Symp. Quant. Biol. 81, 53–60 (2016).
pubmed: 28408647
doi: 10.1101/sqb.2016.81.031021
Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes. Dev. 33, 936–959 (2019).
pubmed: 31123059
pmcid: 6672049
doi: 10.1101/gad.326066.119
Ho, P. J., Lloyd, S. M. & Bao, X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 146, dev178780 (2019).
pubmed: 31570369
pmcid: 6803370
doi: 10.1242/dev.178780
Alendar, A. & Berns, A. Sentinels of chromatin: chromodomain helicase DNA-binding proteins in development and disease. Genes Dev. 35, 1403–1430 (2021).
pubmed: 34725129
pmcid: 8559672
doi: 10.1101/gad.348897.121
Clapier, C. R. Sophisticated conversations between chromatin and chromatin remodelers, and dissonances in cancer. Int. J. Mol. Sci. 22, ijms22115578 (2021).
doi: 10.3390/ijms22115578
Hota, S. K. & Bruneau, B. G. ATP-dependent chromatin remodeling during mammalian development. Development 143, 2882–2897 (2016). Hota and Bruneau comprehensively review genetic and functional studies showing the unique roles of chromatin remodellers during mammalian development.
pubmed: 27531948
pmcid: 5004879
doi: 10.1242/dev.128892
Sundaramoorthy, R. & Owen-Hughes, T. Chromatin remodelling comes into focus. F1000Res 9, https://doi.org/10.12688/f1000research.21933.1 (2020).
Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes. Dev. 6, 2288–2298 (1992).
pubmed: 1459453
doi: 10.1101/gad.6.12a.2288
Sternberg, P. W., Stern, M. J., Clark, I. & Herskowitz, I. Activation of the yeast HO gene by release from multiple negative controls. Cell 48, 567–577 (1987).
pubmed: 3545494
doi: 10.1016/0092-8674(87)90235-2
Nasmyth, K., Stillman, D. & Kipling, D. Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48, 579–587 (1987).
pubmed: 3028642
doi: 10.1016/0092-8674(87)90236-4
Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).
pubmed: 14645854
doi: 10.1126/science.1090701
Hota, S. K. et al. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20, 222–229 (2013).
pubmed: 23334290
pmcid: 3565048
doi: 10.1038/nsmb.2486
Hamiche, A., Sandaltzopoulos, R., Gdula, D. A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).
pubmed: 10399912
doi: 10.1016/S0092-8674(00)80796-5
Langst, G., Bonte, E. J., Corona, D. F. & Becker, P. B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).
pubmed: 10399913
doi: 10.1016/S0092-8674(00)80797-7
Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).
pubmed: 8047169
doi: 10.1038/370477a0
Ayala, R. et al. Structure and regulation of the human INO80-nucleosome complex. Nature 556, 391–395 (2018).
pubmed: 29643506
pmcid: 5937682
doi: 10.1038/s41586-018-0021-6
Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013). This is a clear and concise review of the basic biochemical mechanisms of nucleosome remodelling.
pubmed: 23911317
pmcid: 3781322
doi: 10.1016/j.cell.2013.07.011
Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).
pubmed: 10882076
doi: 10.1016/S1097-2765(00)80430-X
Längst, G. & Becker, P. B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 114, 2561–2568 (2001).
pubmed: 11683384
doi: 10.1242/jcs.114.14.2561
Drane, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).
pubmed: 20504901
pmcid: 2885661
doi: 10.1101/gad.566910
Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).
pubmed: 20651253
pmcid: 2922592
doi: 10.1073/pnas.1008850107
Dyer, M. A., Qadeer, Z. A., Valle-Garcia, D. & Bernstein, E. ATRX and DAXX: mechanisms and mutations. Cold Spring Harb. Perspect. Med. 7, a026567 (2017).
pubmed: 28062559
pmcid: 5334245
doi: 10.1101/cshperspect.a026567
Ni, K. et al. LSH mediates gene repression through macroH2A deposition. Nat. Commun. 11, 5647 (2020).
pubmed: 33159050
pmcid: 7648012
doi: 10.1038/s41467-020-19159-0
Kadoch, C. et al. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).
pubmed: 27941796
doi: 10.1038/ng.3734
Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).
pubmed: 27941795
doi: 10.1038/ng.3735
Clapier, C. R. & Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012).
pubmed: 23143334
pmcid: 3631562
doi: 10.1038/nature11625
Wu, J. I., Lessard, J. & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200–206 (2009).
pubmed: 19167321
pmcid: 2770578
doi: 10.1016/j.cell.2009.01.009
Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288 e1220 (2018).
pubmed: 30343899
pmcid: 6791824
doi: 10.1016/j.cell.2018.09.032
Erdel, F. & Rippe, K. Chromatin remodelling in mammalian cells by ISWI-type complexes—where, when and why? FEBS J. 278, 3608–3618 (2011).
pubmed: 21810179
doi: 10.1111/j.1742-4658.2011.08282.x
Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes. Dev. 10, 2117–2130 (1996).
pubmed: 8804307
doi: 10.1101/gad.10.17.2117
Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI–SNF complex. EMBO J. 15, 5370–5382 (1996).
pubmed: 8895581
pmcid: 452280
doi: 10.1002/j.1460-2075.1996.tb00921.x
Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 8, e49424 (2019).
pubmed: 31647409
pmcid: 6812963
doi: 10.7554/eLife.49424
Chang, C. Y. et al. Increased ACTL6A occupancy within mSWI/SNF chromatin remodelers drives human squamous cell carcinoma. Mol. Cell 81, 4964–4978 e4968 (2021).
pubmed: 34687603
pmcid: 8761479
doi: 10.1016/j.molcel.2021.10.005
Biggin, M. D. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626 (2011).
pubmed: 22014521
doi: 10.1016/j.devcel.2011.09.008
Fulton, S. L. et al. Rescue of deficits by Brwd1 copy number restoration in the Ts65Dn mouse model of Down syndrome. Nat. Commun. 13, 6384 (2022).
pubmed: 36289231
pmcid: 9606253
doi: 10.1038/s41467-022-34200-0
Braun, S. M. G. et al. BAF subunit switching regulates chromatin accessibility to control cell cycle exit in the developing mammalian cortex. Genes. Dev. 35, 335–353 (2021).
pubmed: 33602870
pmcid: 7919417
doi: 10.1101/gad.342345.120
Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007). Lessard and colleagues describe a neuron-specific remodelling complex (neuronal BAF or nBAF) with subunits expressed only in the nervous system.
pubmed: 17640523
pmcid: 2674110
doi: 10.1016/j.neuron.2007.06.019
Goodman, J. V. & Bonni, A. Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. Curr. Opin. Neurobiol. 59, 59–68 (2019).
pubmed: 31146125
pmcid: 6879819
doi: 10.1016/j.conb.2019.04.010
Nitarska, J. et al. A functional switch of NuRD chromatin remodeling complex subunits regulates mouse cortical development. Cell Rep. 17, 1683–1698 (2016).
pubmed: 27806305
pmcid: 5149529
doi: 10.1016/j.celrep.2016.10.022
Yoo, A. S., Staahl, B. T., Chen, L. & Crabtree, G. R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646 (2009).
pubmed: 19561591
pmcid: 2921580
doi: 10.1038/nature08139
Takeuchi, J. K. & Bruneau, B. G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459, 708–711 (2009). These two studies defined switches in BAF complex subunit composition that are instructive for maturation of neurons (Yoo et al., 2009) or the cardiomyocytes (Takeuchi et al., 2009), and the groups have continued to study the cell-type-specific remodeller complexes.
pubmed: 19396158
pmcid: 2728356
doi: 10.1038/nature08039
Lim, H. Y. G. et al. Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature 585, 404–409 (2020).
pubmed: 32848249
doi: 10.1038/s41586-020-2647-4
Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA 106, 5181–5186 (2009).
pubmed: 19279220
pmcid: 2654396
doi: 10.1073/pnas.0812889106
Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996).
pubmed: 8980231
doi: 10.1016/S0092-8674(00)81820-6
Laurent, B. C., Yang, X. & Carlson, M. An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family. Mol. Cell Biol. 12, 1893–1902 (1992).
pubmed: 1549132
pmcid: 369633
Tsuchiya, E. et al. The Saccharomyces cerevisiae NPS1 gene, a novel CDC gene which encodes a 160 kDa nuclear protein involved in G2 phase control. EMBO J. 11, 4017–4026 (1992).
pubmed: 1396591
pmcid: 556912
doi: 10.1002/j.1460-2075.1992.tb05495.x
Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes. Dev. 13, 686–697 (1999).
pubmed: 10090725
pmcid: 316555
doi: 10.1101/gad.13.6.686
Alén, C. et al. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol. Cell 10, 1441–1452 (2002).
pubmed: 12504018
doi: 10.1016/S1097-2765(02)00778-5
Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).
pubmed: 21940898
pmcid: 3428865
doi: 10.1126/science.1206097
Kubik, S. et al. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat. Struct. Mol. Biol. 26, 744–754 (2019).
pubmed: 31384063
doi: 10.1038/s41594-019-0273-3
Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, e712 (2016).
doi: 10.1016/j.cell.2016.09.045
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654
pmcid: 7334197
doi: 10.1038/s41586-020-2308-7
Rice, A. M. & McLysaght, A. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat. Commun. 8, 14366 (2017).
pubmed: 28176757
pmcid: 5309798
doi: 10.1038/ncomms14366
Firth, H. V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).
pubmed: 19344873
pmcid: 2667985
doi: 10.1016/j.ajhg.2009.03.010
Valencia, A. M. et al. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders. Nat. Genet. 55, 1400–1412 (2023).
pubmed: 37500730
pmcid: 10412456
doi: 10.1038/s41588-023-01451-6
Morrill, S. A. & Amon, A. Why haploinsufficiency persists. Proc. Natl Acad. Sci. USA 116, 11866–11871 (2019). Morill and Amon provide an insightful perspective on how genetic dosage and haploinsufficiency contribute to cellular fitness.
pubmed: 31142641
pmcid: 6575174
doi: 10.1073/pnas.1900437116
Wenderski, W. et al. Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proc. Natl Acad. Sci. USA 117, 10055–10066 (2020). The authors identified recessive missense variants in a neuron-specific subunit of the BAF complex in individuals with autism spectrum disorder, and mapped their biochemical contributions to autism-spectrum-disorder-related phenotypes in flies, human organoids and mouse models, finding that these mutations produce specific defects in social behaviour and neuronal-activity-dependent responses.
pubmed: 32312822
pmcid: 7211998
doi: 10.1073/pnas.1908238117
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
pubmed: 27535533
pmcid: 5018207
doi: 10.1038/nature19057
Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature 581, 459–464 (2020).
pubmed: 32461653
pmcid: 7272226
doi: 10.1038/s41586-020-2267-z
The Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).
doi: 10.1038/nature14135
Kennison, J. A. & Tamkun, J. W. Dosage-dependent modifiers of Polycomb and Antennapedia mutations in Drosophila. Proc. Natl Acad. Sci. USA 85, 8136–8140 (1988). In this study, Kennison and Tamkun identified the ATPase Brahma (part of the BAF complex) and its role in opposing Polycomb complexes; the opposition between Polycomb and BAF complexes is a crucial underlying mechanism that has been observed in many human malignancies and developmental disorders.
pubmed: 3141923
pmcid: 282375
doi: 10.1073/pnas.85.21.8136
Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010). Deal, Henikoff and Henikoff develop a chemical biological method to measure rates of nucleosome turnover and find that turnover occurs faster than a cell cycle across most of the genome, implying that nucleosome remodelling itself can regulate active or repressive gene expression states simply by modulating local DNA accessibility.
pubmed: 20508129
pmcid: 2879085
doi: 10.1126/science.1186777
Lai, B. et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 562, 281–285 (2018).
pubmed: 30258225
pmcid: 8353605
doi: 10.1038/s41586-018-0567-3
Yildirim, O. et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147, 1498–1510 (2011).
pubmed: 22196727
pmcid: 3252821
doi: 10.1016/j.cell.2011.11.054
Narlikar, G. J., Fan, H.-Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).
pubmed: 11909519
doi: 10.1016/S0092-8674(02)00654-2
Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).
pubmed: 11864602
doi: 10.1016/S1097-2765(02)00459-8
Soufi, A. et al. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161, 555–568 (2015).
pubmed: 25892221
pmcid: 4409934
doi: 10.1016/j.cell.2015.03.017
Barozzi, I. et al. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. Mol. Cell 54, 844–857 (2014).
pubmed: 24813947
pmcid: 4048654
doi: 10.1016/j.molcel.2014.04.006
Miller, E. L. et al. TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat. Struct. Mol. Biol. 24, 344–352 (2017).
pubmed: 28250416
pmcid: 5395302
doi: 10.1038/nsmb.3384
King, H. W. & Klose, R. J. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife 6, e22631 (2017).
pubmed: 28287392
pmcid: 5400504
doi: 10.7554/eLife.22631
Friman, E. T. et al. Dynamic regulation of chromatin accessibility by pluripotency transcription factors across the cell cycle. eLife 8, e50087 (2019).
pubmed: 31794382
pmcid: 6890464
doi: 10.7554/eLife.50087
Xiao, L. et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature 601, 434–439 (2021).
pubmed: 34937944
pmcid: 8770127
doi: 10.1038/s41586-021-04246-z
Wang, W. et al. Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc. Natl Acad. Sci. USA 95, 492–498 (1998).
pubmed: 9435219
pmcid: 18447
doi: 10.1073/pnas.95.2.492
Smith, M. J. et al. Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat. Genet. 45, 295–298 (2013).
pubmed: 23377182
doi: 10.1038/ng.2552
Barisic, D., Stadler, M. B., Iurlaro, M. & Schubeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019). Barisic and colleagues use functional genomic and epigenomic analyses to identify the unique contributions of different remodellers to the binding of different transcription factors in mouse embryonic stem cells.
pubmed: 30996347
pmcid: 6522387
doi: 10.1038/s41586-019-1115-5
Swinstead, E. E., Paakinaho, V., Presman, D. M. & Hager, G. L. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: a new perspective. BioEssays 38, 1150–1157 (2016).
pubmed: 27633730
pmcid: 6319265
doi: 10.1002/bies.201600137
Grossman, S. R. et al. Positional specificity of different transcription factor classes within enhancers. Proc. Natl Acad. Sci. USA 115, E7222–E7230 (2018).
pubmed: 29987030
pmcid: 6065035
doi: 10.1073/pnas.1804663115
Kim, J. M. et al. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 10, e69387 (2021). Kim and colleagues measure rates of remodeller association with chromatin and find very fast residence times (less than ten seconds), proposing a ‘tug-of-war’ model between many remodellers and other regulators and loci on chromatin.
pubmed: 34313223
pmcid: 8352589
doi: 10.7554/eLife.69387
Erin et al. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165, 593–605 (2016).
doi: 10.1016/j.cell.2016.02.067
Iurlaro, M. et al. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat. Genet. 53, 279–287 (2021).
pubmed: 33558757
doi: 10.1038/s41588-020-00768-w
Schick, S. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53, 269–278 (2021).
pubmed: 33558760
pmcid: 7614082
doi: 10.1038/s41588-021-00777-3
Johnson, T. A. et al. Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo. Nucleic Acids Res. 46, 203–214 (2018).
pubmed: 29126175
doi: 10.1093/nar/gkx1044
Paun, O. et al. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes. Dev. 37, 218–242 (2023).
pubmed: 36931659
pmcid: 10111863
doi: 10.1101/gad.350269.122
Esch, D. et al. A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat. Cell Biol. 15, 295–301 (2013).
pubmed: 23376973
doi: 10.1038/ncb2680
Takaku, M. et al. GATA3-dependent cellular reprogramming requires activation-domain dependent recruitment of a chromatin remodeler. Genome Biol. 17, 36 (2016).
pubmed: 26922637
pmcid: 4769547
doi: 10.1186/s13059-016-0897-0
Zentner, G. E., Tsukiyama, T. & Henikoff, S. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet. 9, e1003317 (2013).
pubmed: 23468649
pmcid: 3585014
doi: 10.1371/journal.pgen.1003317
Weber, C. M. et al. mSWI/SNF promotes Polycomb repression both directly and through genome-wide redistribution. Nat. Struct. Mol. Biol. 28, 501–511 (2021).
pubmed: 34117481
pmcid: 8504423
doi: 10.1038/s41594-021-00604-7
Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e523 (2020).
pubmed: 31981491
pmcid: 7250485
doi: 10.1016/j.cell.2019.12.036
Son, E. Y. & Crabtree, G. R. The role of BAF (mSWI/SNF) complexes in mammalian neural development. Am. J. Med. Genet. C 166, 333–349 (2014).
doi: 10.1002/ajmg.c.31416
Snijders Blok, L. et al. CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat. Commun. 9, 4619 (2018).
pubmed: 30397230
pmcid: 6218476
doi: 10.1038/s41467-018-06014-6
Ronan, J. L., Wu, W. & Crabtree, G. R. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14, 347–359 (2013).
pubmed: 23568486
pmcid: 4010428
doi: 10.1038/nrg3413
Sood, S. et al. CHD8 dosage regulates transcription in pluripotency and early murine neural differentiation. Proc. Natl Acad. Sci. USA 117, 22331–22340 (2020).
pubmed: 32839322
pmcid: 7486765
doi: 10.1073/pnas.1921963117
Breuss, M. W. & Gleeson, J. G. When size matters: CHD8 in autism. Nat. Neurosci. 19, 1430–1432 (2016).
pubmed: 27786184
doi: 10.1038/nn.4431
Durak, O. et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat. Neurosci. 19, 1477–1488 (2016).
pubmed: 27694995
pmcid: 5386887
doi: 10.1038/nn.4400
Rhee, S. et al. Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nat. Commun. 9, 368 (2018).
pubmed: 29371594
pmcid: 5785521
doi: 10.1038/s41467-017-02796-3
Tuoc, T. C. et al. Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Dev. Cell 25, 256–269 (2013).
pubmed: 23643363
doi: 10.1016/j.devcel.2013.04.005
Goljanek-Whysall, K. et al. myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis. Development 141, 3378–3387 (2014).
pubmed: 25078649
pmcid: 4199139
doi: 10.1242/dev.108787
Saccone, V. et al. HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes. Dev. 28, 841–857 (2014).
pubmed: 24682306
pmcid: 4003277
doi: 10.1101/gad.234468.113
Goodwin, L. R. & Picketts, D. J. The role of ISWI chromatin remodeling complexes in brain development and neurodevelopmental disorders. Mol. Cell Neurosci. 87, 55–64 (2018).
pubmed: 29249292
doi: 10.1016/j.mcn.2017.10.008
Alberini, C. M. & Kandel, E. R. The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol. 7, a021741 (2014).
pubmed: 25475090
doi: 10.1101/cshperspect.a021741
Kim, B. et al. Neuronal activity-induced BRG1 phosphorylation regulates enhancer activation. Cell Rep. 36, 109357 (2021).
pubmed: 34260936
pmcid: 8315893
doi: 10.1016/j.celrep.2021.109357
Yang, Y. et al. Chromatin remodeling inactivates activity genes and regulates neural coding. Science 353, 300–305 (2016).
pubmed: 27418512
pmcid: 4993111
doi: 10.1126/science.aad4225
Wu, J. I. et al. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108 (2007).
pubmed: 17920018
doi: 10.1016/j.neuron.2007.08.021
Aizawa, H. et al. Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303, 197–202 (2004). Aizawa and colleagues discovered that CREST (a subunit of the BAF complex) is required for activity-dependent dendritic outgrowth; these findings initiated further studies by this group and many others to understand the contributions of remodellers to activity-dependent neuronal processes.
pubmed: 14716005
doi: 10.1126/science.1089845
Tea, J. S. & Luo, L. The chromatin remodeling factor Bap55 functions through the TIP60 complex to regulate olfactory projection neuron dendrite targeting. Neural Dev. 6, 5 (2011).
pubmed: 21284845
pmcid: 3038883
doi: 10.1186/1749-8104-6-5
Walsh, J. J. et al. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology 46, 2000–2010 (2021).
pubmed: 34239048
pmcid: 8429585
doi: 10.1038/s41386-021-01091-6
Valencia, A. M. et al. Recurrent SMARCB1 mutations reveal a nucleosome acidic patch interaction site that potentiates mSWI/SNF complex chromatin remodeling. Cell 179, 1342–1356.e1323 (2019). Valencia and colleagues used hotspot disease mutations in a BAF subunit to elucidate its biochemical interactions with the nucleosome; the study provides a roadmap for how human genetics data can be used for studies of remodeller mechanisms.
pubmed: 31759698
pmcid: 7175411
doi: 10.1016/j.cell.2019.10.044
Mashtalir, N. et al. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183, 802–817 e824 (2020).
pubmed: 33053319
pmcid: 7717177
doi: 10.1016/j.cell.2020.09.051
Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).
pubmed: 9845365
doi: 10.1016/S0092-8674(00)81633-5
Riviere, J. B. et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat. Genet. 44, 440–444 (2012).
pubmed: 22366783
pmcid: 3677859
doi: 10.1038/ng.1091
Cuvertino, S. et al. ACTB loss-of-function mutations result in a pleiotropic developmental disorder. Am. J. Hum. Genet. 101, 1021–1033 (2017).
pubmed: 29220674
pmcid: 5812896
doi: 10.1016/j.ajhg.2017.11.006
He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).
pubmed: 32001526
doi: 10.1126/science.aaz9761
Clapier, C. R. et al. Regulation of DNA translocation efficiency within the chromatin remodeler RSC/Sth1 potentiates nucleosome sliding and ejection. Mol. Cell 62, 453–461 (2016).
pubmed: 27153540
pmcid: 5291166
doi: 10.1016/j.molcel.2016.03.032
Xie, X., Jankauskas, R., Mazari, A. M. A., Drou, N. & Percipalle, P. β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming. PLoS Genet. 14, e1007846 (2018).
pubmed: 30557298
pmcid: 6312353
doi: 10.1371/journal.pgen.1007846
Mahmood, S. R. et al. β-actin dependent chromatin remodeling mediates compartment level changes in 3D genome architecture. Nat. Commun. 12, 5240 (2021).
pubmed: 34475390
pmcid: 8413440
doi: 10.1038/s41467-021-25596-2
Gibbons, R. J., Picketts, D. J., Villard, L. & Higgs, D. R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80, 837–845 (1995).
pubmed: 7697714
doi: 10.1016/0092-8674(95)90287-2
Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).
pubmed: 20211137
pmcid: 2885838
doi: 10.1016/j.cell.2010.01.003
Noh, K. M. et al. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons. Proc. Natl Acad. Sci. USA 112, 6820–6827 (2015).
pubmed: 25538301
doi: 10.1073/pnas.1411258112
Sachs, P. et al. SMARCAD1 ATPase activity is required to silence endogenous retroviruses in embryonic stem cells. Nat. Commun. 10, 1335 (2019).
pubmed: 30902974
pmcid: 6430823
doi: 10.1038/s41467-019-09078-0
Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).
pubmed: 26601204
pmcid: 4640607
doi: 10.1126/sciadv.1500447
Dunaief, J. L. et al. The retinoblastoma protein and BRGI form a complex and cooperateto induce cell cycle arrest. Cell 79, 119–130 (1994). This paper describes the first evidence that remodellers can act as tumour suppressors.
pubmed: 7923370
doi: 10.1016/0092-8674(94)90405-7
Wong, A. K. C. et al. BRG1, a component of the SWI–SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 60, 6171–6177 (2000).
pubmed: 11085541
Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).
pubmed: 5279523
pmcid: 389051
doi: 10.1073/pnas.68.4.820
Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).
pubmed: 9671307
doi: 10.1038/28212
Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79 (1999).
pubmed: 9892189
Sevenet, N. et al. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am. J. Hum. Genet. 65, 1342–1348 (1999).
pubmed: 10521299
pmcid: 1288286
doi: 10.1086/302639
Biegel, J. A. et al. Germline INI1 mutation in a patient with a central nervous system atypical teratoid tumor and renal rhabdoid tumor. Genes Chromosomes Cancer 28, 31–37 (2000).
pubmed: 10738300
doi: 10.1002/(SICI)1098-2264(200005)28:1<31::AID-GCC4>3.0.CO;2-Y
Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).
pubmed: 21248752
pmcid: 3030920
doi: 10.1038/nature09639
Sanchez-Vega, F. et al. Oncogenic signaling pathways in the Cancer Genome Atlas. Cell 173, 321–337.e310 (2018).
pubmed: 29625050
pmcid: 6070353
doi: 10.1016/j.cell.2018.03.035
Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).
pubmed: 24183448
pmcid: 3891052
doi: 10.1016/j.cell.2013.10.011
Kolla, V., Zhuang, T., Higashi, M., Naraparaju, K. & Brodeur, G. M. Role of CHD5 in human cancers: 10 years later. Cancer Res. 74, 652–658 (2014).
pubmed: 24419087
pmcid: 3965582
doi: 10.1158/0008-5472.CAN-13-3056
Burkhardt, L. et al. CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 73, 2795–2805 (2013).
pubmed: 23492366
doi: 10.1158/0008-5472.CAN-12-1342
Graf, M. et al. Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nat. Commun. 13, 1544 (2022).
pubmed: 35318328
pmcid: 8941154
doi: 10.1038/s41467-022-29152-4
Wu, J. N. & Roberts, C. W. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov. 3, 35–43 (2013).
pubmed: 23208470
doi: 10.1158/2159-8290.CD-12-0361
Bultman, S. J. et al. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27, 460–468 (2008).
pubmed: 17637742
doi: 10.1038/sj.onc.1210664
Wanior, M., Kramer, A., Knapp, S. & Joerger, A. C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 40, 3637–3654 (2021).
pubmed: 33941852
pmcid: 8154588
doi: 10.1038/s41388-021-01781-x
Garbarino, J., Eckroate, J., Sundaram, R. K., Jensen, R. B. & Bindra, R. S. Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity. Transl. Oncol. 14, 101147 (2021).
pubmed: 34118569
pmcid: 8203843
doi: 10.1016/j.tranon.2021.101147
Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).
pubmed: 24520176
pmcid: 3939885
doi: 10.1073/pnas.1316793111
Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).
pubmed: 24562383
pmcid: 3954704
doi: 10.1038/nm.3480
Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).
pubmed: 29083409
pmcid: 5709193
doi: 10.1038/ng.3984
Shen, J. et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat. Med. 24, 556–562 (2018).
pubmed: 29736026
pmcid: 6076433
doi: 10.1038/s41591-018-0012-z
Okamura, R. et al. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy. J. Immunother. Cancer 8, e000438 (2020).
pubmed: 32111729
pmcid: 7057434
doi: 10.1136/jitc-2019-000438
Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).
pubmed: 29301958
pmcid: 5953516
doi: 10.1126/science.aao1710
Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).
pubmed: 29301960
pmcid: 6035749
doi: 10.1126/science.aan5951
Krishnamurthy, N., Kato, S., Lippman, S. & Kurzrock, R. Chromatin remodeling (SWI/SNF) complexes, cancer, and response to immunotherapy. J. Immunother. Cancer 10, e004669 (2022).
pmcid: 9442488
doi: 10.1136/jitc-2022-004669
Guo, A. et al. cBAF complex components and MYC cooperate early in CD8
pubmed: 35732731
pmcid: 9623036
doi: 10.1038/s41586-022-04849-0
Nakayama, R. T. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623 (2017).
pubmed: 28945250
pmcid: 5803080
doi: 10.1038/ng.3958
Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).
pubmed: 27941797
doi: 10.1038/ng.3746
Liu, W. et al. Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene 31, 3939–3948 (2012).
pubmed: 22139082
doi: 10.1038/onc.2011.554
Augello, M. A. et al. CHD1 loss alters AR binding at lineage-specific enhancers and modulates distinct transcriptional programs to drive prostate tumorigenesis. Cancer Cell 35, 603–617.e608 (2019).
pubmed: 30930119
pmcid: 6467783
doi: 10.1016/j.ccell.2019.03.001
Egan, C. M. et al. CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and Polycomb gene repression. Dev. Cell 26, 223–236 (2013).
pubmed: 23948251
doi: 10.1016/j.devcel.2013.07.008
Dykhuizen, E. C. et al. BAF complexes facilitate decatenation of DNA by topoisomerase II α. Nature 497, 624–627 (2013).
pubmed: 23698369
pmcid: 3668793
doi: 10.1038/nature12146
Fillmore, C. M. et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 563, E27 (2015).
doi: 10.1038/s41586-018-0580-6
Seoane, J. A., Kirkland, J. G., Caswell-Jin, J. L., Crabtree, G. R. & Curtis, C. Chromatin regulators mediate anthracycline sensitivity in breast cancer. Nat. Med. 25, 1721–1727 (2019).
pubmed: 31700186
pmcid: 7220800
doi: 10.1038/s41591-019-0638-5
Kakarougkas, A. et al. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol. Cell 55, 723–732 (2014).
pubmed: 25066234
pmcid: 4157577
doi: 10.1016/j.molcel.2014.06.028
Chan, C. S. et al. ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct α-cell signature subgroup. Nat. Commun. 9, 4158 (2018).
pubmed: 30315258
pmcid: 6185985
doi: 10.1038/s41467-018-06498-2
Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).
pubmed: 21719641
pmcid: 3174141
doi: 10.1126/science.1207313
Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).
pubmed: 22286061
doi: 10.1038/nature10833
Xia, L. et al. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell 31, 653–668.e657 (2017).
pubmed: 28486105
pmcid: 5587180
doi: 10.1016/j.ccell.2017.04.005
Clark, J. et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat. Genet. 7, 502–508 (1994).
pubmed: 7951320
doi: 10.1038/ng0894-502
de Leeuw, B., Balemans, M., Olde Weghuis, D. & Geurts van Kessel, A. Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum. Mol. Genet. 4, 1097–1099 (1995).
pubmed: 7655467
doi: 10.1093/hmg/4.6.1097
Skytting, B. et al. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J. Natl Cancer Inst. 91, 974–975 (1999).
pubmed: 10359553
doi: 10.1093/jnci/91.11.974
McBride, M. J. et al. The nucleosome acidic patch and H2A ubiquitination underlie mSWI/SNF recruitment in synovial sarcoma. Nat. Struct. Mol. Biol. 27, 836–845 (2020).
pubmed: 32747783
pmcid: 7714695
doi: 10.1038/s41594-020-0466-9
McBride, M. J. et al. The SS18–SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33, 1128–1141.e1127 (2018).
pubmed: 29861296
pmcid: 6791822
doi: 10.1016/j.ccell.2018.05.002
Kadoch, C. & Crabtree, G. R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18–SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013). These two studies provide an example of how a remodeller may function directly as an oncogene; in this case, by virtue of a genetic translocation in a subunit creating a fusion protein that then drives aberrant remodelling activity.
pubmed: 23540691
pmcid: 3655887
doi: 10.1016/j.cell.2013.02.036
Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife 7, e41305 (2018).
pubmed: 30431433
pmcid: 6277197
doi: 10.7554/eLife.41305
Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat. Genet. 42, 715–721 (2010).
pubmed: 20601955
pmcid: 2911503
doi: 10.1038/ng.619
Sima, X. et al. The genetic alteration spectrum of the SWI/SNF complex: the oncogenic roles of BRD9 and ACTL6A. PLoS One 14, e0222305 (2019).
pubmed: 31504061
pmcid: 6736241
doi: 10.1371/journal.pone.0222305
Zhao, D. et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature 542, 484–488 (2017).
pubmed: 28166537
pmcid: 5448706
doi: 10.1038/nature21357
Zhao, D. et al. Chromatin regulator CHD1 remodels the immunosuppressive tumor microenvironment in PTEN-deficient prostate cancer. Cancer Discov. 10, 1374–1387 (2020).
pubmed: 32385075
pmcid: 7483306
doi: 10.1158/2159-8290.CD-19-1352
Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178.e119 (2017).
pubmed: 28844694
pmcid: 6791823
doi: 10.1016/j.cell.2017.07.036
The Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).
pmcid: 6016744
doi: 10.1038/nature21062
Lelieveld, S. H. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196 (2016).
pubmed: 27479843
doi: 10.1038/nn.4352
Rauch, A. et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380, 1674–1682 (2012).
pubmed: 23020937
doi: 10.1016/S0140-6736(12)61480-9
de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).
pubmed: 23033978
doi: 10.1056/NEJMoa1206524
Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 49, 1593–1601 (2017).
pubmed: 28991257
pmcid: 5675000
doi: 10.1038/ng.3970
Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013). This study extensively surveyed Cancer Genome Atlas data and found that BAF complexes were mutated in almost 20% of all human cancers.
pubmed: 23644491
pmcid: 3667980
doi: 10.1038/ng.2628
Chun, H. E. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).
pubmed: 26977886
pmcid: 5094835
doi: 10.1016/j.ccell.2016.02.009
George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).
pubmed: 26168399
pmcid: 4861069
doi: 10.1038/nature14664
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).
pubmed: 23550210
pmcid: 4160307
doi: 10.1126/scisignal.2004088
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877
doi: 10.1158/2159-8290.CD-12-0095
Neigeborn, L. & Carlson, M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845–858 (1984).
pubmed: 6392017
pmcid: 1224269
doi: 10.1093/genetics/108.4.845
Stern, M., Jensen, R. & Herskowitz, I. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 178, 853–868 (1984). These papers discovered SWI/SNF from screens in yeast for defects in sucrose fermentation and pheromone-dependent mating-type switching.
pubmed: 6436497
doi: 10.1016/0022-2836(84)90315-2
Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes. Dev. 9, 2770–2779 (1995).
pubmed: 7590252
doi: 10.1101/gad.9.22.2770
Laurent, B. C., Treich, I. & Carlson, M. Role of yeast SNF and SWI proteins in transcriptional activation. Cold Spring Harb. Symp. Quant. Biol. 58, 257–263 (1993).
pubmed: 7956037
doi: 10.1101/SQB.1993.058.01.030
Laurent, B., Treitel, M. A. & Carlson, M. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proc. Natl Acad. Sci. USA 88, 2687–2691 (1991).
pubmed: 1901413
pmcid: 51303
doi: 10.1073/pnas.88.7.2687
Peterson, C. L. & Herskowitz, I. Characterization of the yeast SWl, SW2, and SW13 genes, which encode a global activator of transcription. Cell 68, 573–583 (1992).
pubmed: 1339306
doi: 10.1016/0092-8674(92)90192-F
Tamkun, J. W. et al. Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWl2. Cell 66, 561–572 (1992).
doi: 10.1016/0092-8674(92)90191-E
Kingston, R. E. & Tamkun, J. W. Transcriptional regulation by trithorax-group proteins. Cold Spring Harb. Perspect. Biol. 6, a019349 (2014).
pubmed: 25274705
pmcid: 4176006
doi: 10.1101/cshperspect.a019349
Siebenlist, U. et al. Promoter region of interleukin-2 gene undergoes chromatin structure changes and confers inducibility on chloramphenicol acetyltransferase gene during activation of T cells. Mol. Cell Biol. 6, 3042–3049 (1986).
pubmed: 3491296
pmcid: 367038
Goldsmith, M. A., Desai, D. M., Schultz, T. & Weiss, A. Function of a heterologous muscarinic receptor in T cell antigen receptor signal transduction mutants. J. Biol. Chem. 264, 17190–17197 (1989).
pubmed: 2529257
doi: 10.1016/S0021-9258(18)71477-4
Socolovsky, M., Dusanter-Fourt, I. & Lodish, H. F. The prolactin receptor and severely truncated erythropoietin receptors support differentiation of erythroid progenitors. J. Biol. Chem. 272, 14009–14012 (1997).
pubmed: 9162017
doi: 10.1074/jbc.272.22.14009
Brisken, C., Socolovsky, M., Lodish, H. F. & Weinberg, R. The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium. Proc. Natl Acad. Sci. USA 99, 14241–14245 (2002).
pubmed: 12381781
pmcid: 137868
doi: 10.1073/pnas.222549599
Northrop, J. P. et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497–502 (1994).
pubmed: 8202141
doi: 10.1038/369497a0
Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B. & Crabtree, G. R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).
pubmed: 8232556
doi: 10.1038/366170a0
Muchardt, C. & Yaniv, M. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12, 4279–4290 (1993).
pubmed: 8223438
pmcid: 413724
doi: 10.1002/j.1460-2075.1993.tb06112.x
Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, aa05902 (2018).
doi: 10.1126/science.aao5902
Hathaway, N. A. et al. Dynamics and memory of heterochromatin in living cells. Cell 149, 1447–1460 (2012).
pubmed: 22704655
pmcid: 3422694
doi: 10.1016/j.cell.2012.03.052
Gourisankar, S. et al. Rewiring cancer drivers to activate apoptosis. Nature 620, 417–425 (2023).
pubmed: 37495688
pmcid: 10749586
doi: 10.1038/s41586-023-06348-2
Braun, S. M. G. et al. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat. Commun. 8, 560 (2017).
pubmed: 28916764
pmcid: 5601922
doi: 10.1038/s41467-017-00644-y
Ren, J., Hathaway, N. A., Crabtree, G. R. & Muegge, K. Tethering of Lsh at the Oct4 locus promotes gene repression associated with epigenetic changes. Epigenetics 13, 173–181 (2017).
doi: 10.1080/15592294.2017.1338234
Marian, C. A. et al. Small molecule targeting of specific BAF (mSWI/SNF) complexes for HIV latency reversal. Cell Chem. Biol. 25, 1443–1455.e1414 (2018).
pubmed: 30197195
pmcid: 6404985
doi: 10.1016/j.chembiol.2018.08.004
Papillon, J. P. N. et al. Discovery of orally active inhibitors of Brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of Brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. J. Med. Chem. 61, 10155–10172 (2018).
pubmed: 30339381
doi: 10.1021/acs.jmedchem.8b01318
Chory, E. J. et al. Chemical inhibitors of a selective SWI/SNF function synergize with ATR inhibition in cancer cell killing. ACS Chem. Biol. 15, 1685–1696 (2020).
pubmed: 32369697
pmcid: 8273930
doi: 10.1021/acschembio.0c00312
Kishtagari, A. et al. A first-in-class inhibitor of ISWI-mediated (ATP-dependent) transcription repression releases terminal-differentiation in AML cells while sparing normal hematopoiesis. Blood 132, 216 (2018).
doi: 10.1182/blood-2018-99-119311
Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Edn Engl. 56, 5738–5743 (2017).
doi: 10.1002/anie.201611281
Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).
pubmed: 31178587
pmcid: 6600871
doi: 10.1038/s41589-019-0294-6
Schick, S. et al. Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat. Genet. 51, 1399–1410 (2019).
pubmed: 31427792
pmcid: 6952272
doi: 10.1038/s41588-019-0477-9
Rago, F. et al. Exquisite sensitivity to dual BRG1/BRM ATPase inhibitors reveals broad SWI/SNF dependencies in acute myeloid leukemia. Mol. Cancer Res. 20, 361–372 (2022).
pubmed: 34799403
doi: 10.1158/1541-7786.MCR-21-0390
Dann, G. P. et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548, 607–611 (2017).
pubmed: 28767641
pmcid: 5777669
doi: 10.1038/nature23671
Mashtalir, N. et al. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science 373, 306–315 (2021).
pubmed: 34437148
pmcid: 8390793
doi: 10.1126/science.abf8705
Chory, E. J. et al. Nucleosome turnover regulates histone methylation patterns over the genome. Mol. Cell 73, 61–72 e63 (2019).
pubmed: 30472189
doi: 10.1016/j.molcel.2018.10.028
Butler, K. V., Chiarella, A. M., Jin, J. & Hathaway, N. A. Targeted gene repression using novel bifunctional molecules to harness endogenous histone deacetylation activity. ACS Synth. Biol. 7, 38–45 (2018).
pubmed: 29073761
doi: 10.1021/acssynbio.7b00295
Chiarella, A. M. et al. Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery. Nat. Biotechnol. 38, 50–55 (2020).
pubmed: 31712774
doi: 10.1038/s41587-019-0296-7
Abbott, J. M. et al. First-in-class inhibitors of oncogenic CHD1L with preclinical activity against colorectal cancer. Mol. Cancer Ther. 19, 1598–1612 (2020).
pubmed: 32499299
pmcid: 7665848
doi: 10.1158/1535-7163.MCT-20-0106
Prigaro, B. J. et al. Design, synthesis, and biological evaluation of the first inhibitors of oncogenic CHD1L. J. Med. Chem. 65, 3943–3961 (2022).
pubmed: 35192363
pmcid: 8981980
doi: 10.1021/acs.jmedchem.1c01778
Vangamudi, B. et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 75, 3865–3878 (2015).
pubmed: 26139243
pmcid: 4755107
doi: 10.1158/0008-5472.CAN-14-3798
Martin, L. J. et al. Structure-based design of an in vivo active selective BRD9 inhibitor. J. Med. Chem. 59, 4462–4475 (2016).
pubmed: 26914985
pmcid: 4885110
doi: 10.1021/acs.jmedchem.5b01865
Remillard, D. et al. Chemoproteomics enabled discovery of selective probes for NuA4 factor BRD8. ACS Chem. Biol. 16, 2185–2192 (2021).
pubmed: 34515462
doi: 10.1021/acschembio.1c00256
Chen, P. et al. Discovery and characterization of GSK2801, a selective chemical probe for the bromodomains BAZ2A and BAZ2B. J. Med. Chem. 59, 1410–1424 (2016).
pubmed: 25799074
doi: 10.1021/acs.jmedchem.5b00209
Lu, T. et al. Discovery of high-affinity inhibitors of the BPTF bromodomain. J. Med. Chem. 64, 12075–12088 (2021).
pubmed: 34375106
doi: 10.1021/acs.jmedchem.1c00721
Zahid, H. et al. New design rules for developing potent cell-active inhibitors of the nucleosome remodeling factor (NURF) via BPTF bromodomain inhibition. J. Med. Chem. 64, 13902–13917 (2021).
pubmed: 34515477
pmcid: 9012132
doi: 10.1021/acs.jmedchem.1c01294
Park, S. G., Lee, D., Seo, H. R., Lee, S. A. & Kwon, J. Cytotoxic activity of bromodomain inhibitor NVS-CECR2-1 on human cancer cells. Sci. Rep. 10, 16330 (2020).
pubmed: 33004947
pmcid: 7529788
doi: 10.1038/s41598-020-73500-7
Shishodia, S. et al. Selective and cell-active PBRM1 bromodomain inhibitors discovered through NMR fragment screening. J. Med. Chem. 65, 13714–13735 (2022).
pubmed: 36227159
pmcid: 9630929
doi: 10.1021/acs.jmedchem.2c00864
Londregan, A. T. et al. Discovery of high-affinity small-molecule binders of the epigenetic reader YEATS4. J. Med. Chem. 66, 460–472 (2023).
pubmed: 36562986
doi: 10.1021/acs.jmedchem.2c01421
Coffey, K. et al. Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One 7, e45539 (2012).
pubmed: 23056207
pmcid: 3466219
doi: 10.1371/journal.pone.0045539
Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831 (2016).
pubmed: 27599530
pmcid: 5046688
doi: 10.1101/cshperspect.a026831
Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022).
pubmed: 36216795
pmcid: 9551036
doi: 10.1038/s41467-022-33430-6
Zoppi, V. et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel–Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J. Med. Chem. 62, 699–726 (2019).
pubmed: 30540463
doi: 10.1021/acs.jmedchem.8b01413
Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).
pubmed: 29581585
pmcid: 6295913
doi: 10.1038/s41589-018-0021-8
Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009). These two papers describe two chemical biological tools that use chemically induced proximity to recruit endogenous proteins to the proteosome in order to rapidly delete them in living cells and organisms and have been increasingly deployed to define the direct functions of remodellers.
pubmed: 19915560
doi: 10.1038/nmeth.1401