Depletion of Labile Iron Induces Replication Stress and Enhances Responses to Chemoradiation in Non-Small-Cell Lung Cancer.

DNA damage cell cycle chemoradiation deferoxamine ferritin heavy chain holo-transferrin iron chelator labile iron pool lung cancer replication stress

Journal

Antioxidants (Basel, Switzerland)
ISSN: 2076-3921
Titre abrégé: Antioxidants (Basel)
Pays: Switzerland
ID NLM: 101668981

Informations de publication

Date de publication:
15 Nov 2023
Historique:
received: 12 10 2023
revised: 31 10 2023
accepted: 09 11 2023
medline: 25 11 2023
pubmed: 25 11 2023
entrez: 25 11 2023
Statut: epublish

Résumé

The intracellular redox-active labile iron pool (LIP) is weakly chelated and available for integration into the iron metalloproteins that are involved in diverse cellular processes, including cancer cell-specific metabolic oxidative stress. Abnormal iron metabolism and elevated LIP levels are linked to the poor survival of lung cancer patients, yet the underlying mechanisms remain unclear. Depletion of the LIP in non-small-cell lung cancer cell lines using the doxycycline-inducible overexpression of the ferritin heavy chain (Ft-H) (H1299 and H292), or treatment with deferoxamine (DFO) (H1299 and A549), inhibited cell growth and decreased clonogenic survival. The Ft-H overexpression-induced inhibition of H1299 and H292 cell growth was also accompanied by a significant delay in transit through the S-phase. In addition, both Ft-H overexpression and DFO in H1299 resulted in increased single- and double-strand DNA breaks, supporting the involvement of replication stress in the response to LIP depletion. The Ft-H and DFO treatment also sensitized H1299 to VE-821, an inhibitor of ataxia telangiectasis and Rad2-related (ATR) kinase, highlighting the potential of LIP depletion, combined with DNA damage response modifiers, to alter lung cancer cell responses. In contrast, only DFO treatment effectively reduced the LIP, clonogenic survival, cell growth, and sensitivity to VE-821 in A549 non-small-cell lung cancer cells. Importantly, the Ft-H and DFO sensitized both H1299 and A549 to chemoradiation in vitro, and Ft-H overexpression increased the efficacy of chemoradiation in vivo in H1299. These results support the hypothesis that the depletion of the LIP can induce genomic instability, cell death, and potentiate therapeutic responses to chemoradiation in NSCLC.

Identifiants

pubmed: 38001858
pii: antiox12112005
doi: 10.3390/antiox12112005
pmc: PMC10669787
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : NCI NIH HHS
ID : P30 CA086862
Pays : United States
Organisme : NIH HHS
ID : R50CA243693
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA244091
Pays : United States
Organisme : NIH HHS
ID : P30 CA086862
Pays : United States
Organisme : NCI NIH HHS
ID : R50 CA243693
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA217797
Pays : United States
Organisme : NIH HHS
ID : P01CA217797
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES005605
Pays : United States
Organisme : NIH HHS
ID : R21CA256301
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA256301
Pays : United States
Organisme : NIH HHS
ID : T32CA078586
Pays : United States

Références

Cell Rep. 2022 Aug 16;40(7):111207
pubmed: 35977492
Front Oncol. 2022 Jan 20;11:794735
pubmed: 35127502
Metallomics. 2017 Nov 15;9(11):1483-1500
pubmed: 28879348
J Cell Sci. 2015 Dec 15;128(24):4653-65
pubmed: 26567217
Free Radic Biol Med. 2002 Oct 15;33(8):1037-46
pubmed: 12374615
Theranostics. 2021 Jul 25;11(17):8412-8429
pubmed: 34373750
Cancer Sci. 2021 Jan;112(1):410-421
pubmed: 32770631
Cytokine. 2002 Jul 7;19(1):21-6
pubmed: 12200109
Front Oncol. 2023 Jun 15;13:1185715
pubmed: 37397370
Cancer Sci. 2022 Mar;113(3):828-837
pubmed: 34962017
Annu Rev Nutr. 2018 Aug 21;38:97-125
pubmed: 30130469
Antioxidants (Basel). 2021 Sep 14;10(9):
pubmed: 34573089
Curr Med Chem. 2003 Jun;10(12):1021-34
pubmed: 12678674
Biochim Biophys Acta. 2015 Jun;1853(6):1253-71
pubmed: 25655665
CA Cancer J Clin. 2022 Jan;72(1):7-33
pubmed: 35020204
Cold Spring Harb Perspect Biol. 2012 Oct 01;4(10):
pubmed: 22904560
Genes Dev. 2013 Jul 15;27(14):1610-23
pubmed: 23873943
Nat Commun. 2020 Oct 27;11(1):5424
pubmed: 33110073
Blood Rev. 2009 May;23(3):95-104
pubmed: 18835072
Cancer Lett. 2019 Nov 1;464:56-61
pubmed: 31437477
Nat Rev Cancer. 2013 May;13(5):342-55
pubmed: 23594855
Semin Cell Dev Biol. 2021 May;113:27-37
pubmed: 33967572
Genes (Basel). 2019 Jan 29;10(2):
pubmed: 30700024
J Inorg Biochem. 2020 Sep;210:111159
pubmed: 32652260
Cancer Sci. 2018 Feb;109(2):264-271
pubmed: 29168596
Anal Biochem. 1997 May 15;248(1):31-40
pubmed: 9177722
Nat Rev Mol Cell Biol. 2017 Oct;18(10):622-636
pubmed: 28811666
Cancer Cell. 2017 Apr 10;31(4):487-500.e8
pubmed: 28366679
Front Genet. 2023 Mar 08;14:1152398
pubmed: 36968611
Blood. 2005 Nov 1;106(9):3191-9
pubmed: 16014567
BMC Med. 2011 May 23;9:62
pubmed: 21605374
Med Sci Monit. 2007 Apr;13(4):CR195-200
pubmed: 17392651
PLoS One. 2019 Jan 14;14(1):e0208610
pubmed: 30640897
Cells. 2022 Feb 23;11(5):
pubmed: 35269393
J Clin Biochem Nutr. 2014 Jan;54(1):12-7
pubmed: 24426185
Cancers (Basel). 2019 Jul 30;11(8):
pubmed: 31366108
Ann Oncol. 2017 May 1;28(5):1124-1129
pubmed: 28453699
Curr Top Med Chem. 2004;4(15):1623-35
pubmed: 15579100
Curr Drug Targets. 2022;23(13):1261-1276
pubmed: 35792117
Cytometry. 1985 Nov;6(6):620-6
pubmed: 4064842
Nat Rev Drug Discov. 2023 Jan;22(1):38-58
pubmed: 36202931
Biochemistry. 2006 Mar 14;45(10):3429-36
pubmed: 16519538
Redox Biol. 2018 Apr;14:82-87
pubmed: 28886484
Mol Cancer Res. 2022 Feb;20(2):265-279
pubmed: 34670865
Clin Immunol. 2021 Nov;232:108872
pubmed: 34648954
Environ Int. 2019 Jun;127:685-693
pubmed: 30991224
Cancer Metab. 2022 May 12;10(1):8
pubmed: 35550011
Sci Total Environ. 2022 Feb 25;809:151118
pubmed: 34718002
Mol Cell. 2020 Feb 6;77(3):645-655.e7
pubmed: 31983508
Biochem J. 2001 Jul 1;357(Pt 1):241-7
pubmed: 11415455
Molecules. 2022 May 07;27(9):
pubmed: 35566360
Curr Med Chem. 2009;16(19):2416-29
pubmed: 19601789
Cancer Res. 2003 May 1;63(9):2109-17
pubmed: 12727827
PLoS Genet. 2013;9(7):e1003643
pubmed: 23874235
J Biol Chem. 2011 Oct 14;286(41):35396-35406
pubmed: 21852233
Cell Death Dis. 2018 Dec 5;9(12):1174
pubmed: 30518922
G3 (Bethesda). 2021 Jul 14;11(7):
pubmed: 34009341
Protein Cell. 2014 Oct;5(10):750-60
pubmed: 25000876
Bioengineered. 2021 Dec;12(1):4556-4568
pubmed: 34323652
Crit Rev Oncog. 2013;18(5):435-48
pubmed: 23879588

Auteurs

Khaliunaa Bayanbold (K)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Mekhla Singhania (M)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Melissa A Fath (MA)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Charles C Searby (CC)

University of Iowa Hospitals and Clinics, Department Pediatrics, University of Iowa, Iowa City, IA 52242, USA.

Jeffrey M Stolwijk (JM)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

John B Henrich (JB)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Casey F Pulliam (CF)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Joshua D Schoenfeld (JD)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Kranti A Mapuskar (KA)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Sei Sho (S)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Joseph M Caster (JM)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Bryan G Allen (BG)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Garry R Buettner (GR)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Maria Spies (M)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.
University of Iowa Hospitals and Clinics, Holden Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, Iowa City, IA 52242, USA.

Prabhat C Goswami (PC)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Michael S Petronek (MS)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Douglas R Spitz (DR)

University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA.

Classifications MeSH