Intelligent Estimation of Exercise Induced Energy Expenditure Including Excess Post-Exercise Oxygen Consumption (EPOC) with Different Exercise Intensity.
energy expenditure
excess post-exercise oxygen consumption
heart rate
machine learning
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
16 Nov 2023
16 Nov 2023
Historique:
received:
27
09
2023
revised:
14
11
2023
accepted:
14
11
2023
medline:
27
11
2023
pubmed:
25
11
2023
entrez:
25
11
2023
Statut:
epublish
Résumé
The limited availability of calorimetry systems for estimating human energy expenditure (EE) while conducting exercise has prompted the development of wearable sensors utilizing readily accessible methods. We designed an energy expenditure estimation method which considers the energy consumed during the exercise, as well as the excess post-exercise oxygen consumption (EPOC) using machine learning algorithms. Thirty-two healthy adults (mean age = 28.2 years; 11 females) participated in 20 min of aerobic exercise sessions (low intensity = 40% of maximal oxygen uptake [VO2 max], high intensity = 70% of VO2 max). The physical characteristics, exercise intensity, and the heart rate data monitored from the beginning of the exercise sessions to where the participants' metabolic rate returned to an idle state were used in the EE estimation models. Our proposed estimation shows up to 0.976 correlation between estimated energy expenditure and ground truth (root mean square error: 0.624 kcal/min). In conclusion, our study introduces a highly accurate method for estimating human energy expenditure during exercise using wearable sensors and machine learning. The achieved correlation up to 0.976 with ground truth values underscores its potential for widespread use in fitness, healthcare, and sports performance monitoring.
Identifiants
pubmed: 38005621
pii: s23229235
doi: 10.3390/s23229235
pmc: PMC10675648
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Yonsei Signature Research Cluster Project
ID : 2021-22-0009
Références
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6451-4
pubmed: 23367406
Sports Med. 2003;33(14):1037-60
pubmed: 14599232
J Sports Sci. 2005 Jan;23(1):15-9
pubmed: 15841591
Sensors (Basel). 2023 Aug 15;23(16):
pubmed: 37631714
Eur J Appl Physiol. 2002 Mar;86(5):411-7
pubmed: 11882927
Am J Clin Nutr. 1990 Jul;52(1):59-65
pubmed: 2193501
J Sports Sci. 2005 Mar;23(3):289-97
pubmed: 15966347
Med Sci Sports Exerc. 1984;16(1):29-43
pubmed: 6369064
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5185-8
pubmed: 21096036
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6566-9
pubmed: 26737797
Obes Rev. 2021 Jan;22(1):e13099
pubmed: 32656951
J Appl Physiol (1985). 1997 Dec;83(6):2112-22
pubmed: 9390989
Sports Med. 2003;33(9):683-98
pubmed: 12846591
Heart Lung Circ. 2007;16 Suppl 3:S102-4
pubmed: 17606401
Sensors (Basel). 2023 Feb 23;23(5):
pubmed: 36904679
Int J Chron Obstruct Pulmon Dis. 2017 Aug 21;12:2465-2475
pubmed: 28860741
Pediatr Res. 1981 Aug;15(8):1077-82
pubmed: 7267181
IEEE Trans Biomed Eng. 2011 Oct;58(10):2804-15
pubmed: 21690001
Front Public Health. 2022 Jul 27;10:909766
pubmed: 35968455