Influence of Process Parameters in Material Extrusion on Product Properties Using the Example of the Electrical Resistivity of Conductive Polymer Composites.

3D printing Fused Deposition Modeling additive manufacturing conductive polymer composite design for additive manufacturing electrical resistivity electrically conductive filament fabrication material extrusion

Journal

Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357

Informations de publication

Date de publication:
17 Nov 2023
Historique:
received: 19 10 2023
revised: 13 11 2023
accepted: 14 11 2023
medline: 25 11 2023
pubmed: 25 11 2023
entrez: 25 11 2023
Statut: epublish

Résumé

Additive manufacturing of components using the material extrusion (MEX) of thermoplastics enables the integration of multiple materials into a single part. This can include functional structures, such as electrically conductive ones. The resulting functional structure properties depend on the process parameters along the entire manufacturing chain. The aim of this investigation is to determine the influence of process parameters in filament production and additive manufacturing on resistivity. Filament is produced from a commercially available composite of polylactide (PLA) with carbon nanotubes (CNT) and carbon black (CB), while the temperature profile and screw speed were varied. MEX specimens were produced using a full-factorial variation in extrusion temperature, layer height and deposition speed from the most and least conductive in-house-produced filament and the commercially available filament from the same composite. The results show that the temperature profile during filament production influences the resistivity. The commercially available filament has a lower conductivity than the in-house-produced filament, even though the starting feedstock is the same. The process parameters during filament production are the main factors influencing the resistivity of an additively manufactured structure. The MEX process parameters have a minimal influence on the resistivity of the used PLA/CNT/CB composite.

Identifiants

pubmed: 38006176
pii: polym15224452
doi: 10.3390/polym15224452
pmc: PMC10675492
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : 452679573, 452009430

Références

Materials (Basel). 2022 Jan 20;15(3):
pubmed: 35160709
Polymers (Basel). 2018 Aug 18;10(8):
pubmed: 30960850
Nanomaterials (Basel). 2018 Jan 18;8(1):
pubmed: 29346291
Polymers (Basel). 2020 Mar 25;12(4):
pubmed: 32218169
Polymers (Basel). 2019 Apr 01;11(4):
pubmed: 30960575
Sensors (Basel). 2020 Aug 13;20(16):
pubmed: 32823712
Nanotechnology. 2019 Jun 14;30(24):245703
pubmed: 30822767
Polymers (Basel). 2020 Jan 04;12(1):
pubmed: 31947971
Nanomaterials (Basel). 2019 Dec 21;10(1):
pubmed: 31877817

Auteurs

Maximilian Nowka (M)

Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Str. 42, 38108 Brunswick, Germany.

Karl Hilbig (K)

Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Str. 42, 38108 Brunswick, Germany.

Lukas Schulze (L)

Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Str. 42, 38108 Brunswick, Germany.

Eggert Jung (E)

Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Str. 42, 38108 Brunswick, Germany.

Thomas Vietor (T)

Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Str. 42, 38108 Brunswick, Germany.

Classifications MeSH