Plasma metabolite predictors of metabolic syndrome incidence and reversion.

Metabolic syndrome Metabolic syndrome incidence Metabolic syndrome reversion Metabolomics PREDIMED

Journal

Metabolism: clinical and experimental
ISSN: 1532-8600
Titre abrégé: Metabolism
Pays: United States
ID NLM: 0375267

Informations de publication

Date de publication:
24 Nov 2023
Historique:
received: 02 06 2023
revised: 19 11 2023
accepted: 19 11 2023
pubmed: 26 11 2023
medline: 26 11 2023
entrez: 25 11 2023
Statut: aheadofprint

Résumé

Metabolic Syndrome (MetS) is a progressive pathophysiological state defined by a cluster of cardiometabolic traits. However, little is known about metabolites that may be predictors of MetS incidence or reversion. Our objective was to identify plasma metabolites associated with MetS incidence or MetS reversion. The study included 1468 participants without cardiovascular disease (CVD) but at high CVD risk at enrollment from two case-cohort studies nested within the PREvención con DIeta MEDiterránea (PREDIMED) study with baseline metabolomics data. MetS was defined in accordance with the harmonized International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute criteria, which include meeting 3 or more thresholds for waist circumference, triglyceride, HDL cholesterol, blood pressure, and fasting blood glucose. MetS incidence was defined by not having MetS at baseline but meeting the MetS criteria at a follow-up visit. MetS reversion was defined by MetS at baseline but not meeting MetS criteria at a follow-up visit. Plasma metabolome was profiled by LC-MS. Multivariable-adjusted Cox regression models and elastic net regularized regressions were used to assess the association of 385 annotated metabolites with MetS incidence and MetS reversion after adjusting for potential risk factors. Of the 603 participants without baseline MetS, 298 developed MetS over the median 4.8-year follow-up. Of the 865 participants with baseline MetS, 285 experienced MetS reversion. A total of 103 and 88 individual metabolites were associated with MetS incidence and MetS reversion, respectively, after adjusting for confounders and false discovery rate correction. A metabolomic signature comprised of 77 metabolites was robustly associated with MetS incidence (HR: 1.56 (95 % CI: 1.33-1.83)), and a metabolomic signature of 83 metabolites associated with MetS reversion (HR: 1.44 (95 % CI: 1.25-1.67)), both p < 0.001. The MetS incidence and reversion signatures included several lipids (mainly glycerolipids and glycerophospholipids) and branched-chain amino acids. We identified unique metabolomic signatures, primarily comprised of lipids (including glycolipids and glycerophospholipids) and branched-chain amino acids robustly associated with MetS incidence; and several amino acids and glycerophospholipids associated with MetS reversion. These signatures provide novel insights on potential distinct mechanisms underlying the conditions leading to the incidence or reversion of MetS.

Sections du résumé

BACKGROUND BACKGROUND
Metabolic Syndrome (MetS) is a progressive pathophysiological state defined by a cluster of cardiometabolic traits. However, little is known about metabolites that may be predictors of MetS incidence or reversion. Our objective was to identify plasma metabolites associated with MetS incidence or MetS reversion.
METHODS METHODS
The study included 1468 participants without cardiovascular disease (CVD) but at high CVD risk at enrollment from two case-cohort studies nested within the PREvención con DIeta MEDiterránea (PREDIMED) study with baseline metabolomics data. MetS was defined in accordance with the harmonized International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute criteria, which include meeting 3 or more thresholds for waist circumference, triglyceride, HDL cholesterol, blood pressure, and fasting blood glucose. MetS incidence was defined by not having MetS at baseline but meeting the MetS criteria at a follow-up visit. MetS reversion was defined by MetS at baseline but not meeting MetS criteria at a follow-up visit. Plasma metabolome was profiled by LC-MS. Multivariable-adjusted Cox regression models and elastic net regularized regressions were used to assess the association of 385 annotated metabolites with MetS incidence and MetS reversion after adjusting for potential risk factors.
RESULTS RESULTS
Of the 603 participants without baseline MetS, 298 developed MetS over the median 4.8-year follow-up. Of the 865 participants with baseline MetS, 285 experienced MetS reversion. A total of 103 and 88 individual metabolites were associated with MetS incidence and MetS reversion, respectively, after adjusting for confounders and false discovery rate correction. A metabolomic signature comprised of 77 metabolites was robustly associated with MetS incidence (HR: 1.56 (95 % CI: 1.33-1.83)), and a metabolomic signature of 83 metabolites associated with MetS reversion (HR: 1.44 (95 % CI: 1.25-1.67)), both p < 0.001. The MetS incidence and reversion signatures included several lipids (mainly glycerolipids and glycerophospholipids) and branched-chain amino acids.
CONCLUSION CONCLUSIONS
We identified unique metabolomic signatures, primarily comprised of lipids (including glycolipids and glycerophospholipids) and branched-chain amino acids robustly associated with MetS incidence; and several amino acids and glycerophospholipids associated with MetS reversion. These signatures provide novel insights on potential distinct mechanisms underlying the conditions leading to the incidence or reversion of MetS.

Identifiants

pubmed: 38007148
pii: S0026-0495(23)00346-3
doi: 10.1016/j.metabol.2023.155742
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

155742

Informations de copyright

Copyright © 2023. Published by Elsevier Inc.

Déclaration de conflit d'intérêts

Declaration of competing interest No conflicts of interest to disclose.

Auteurs

Zhila Semnani-Azad (Z)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Electronic address: zsemnaniazad@hsph.harvard.edu.

Estefanía Toledo (E)

Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. Electronic address: etoledo@unav.es.

Nancy Babio (N)

Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere i Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain. Electronic address: nancy.babio@urv.cat.

Miguel Ruiz-Canela (M)

Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. Electronic address: mcanela@unav.es.

Clemens Wittenbecher (C)

Division of Food and Nutrition Sciences, Department of Biology, Chalmers University of Technology, Gothenburg, Sweden. Electronic address: clemens.wittenbecher@chalmers.se.

Cristina Razquin (C)

Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. Electronic address: crazquin@unav.es.

Fenglei Wang (F)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Electronic address: fengleiwang@g.harvard.edu.

Courtney Dennis (C)

Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA. Electronic address: cdennis@broadinstitute.org.

Amy Deik (A)

Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA. Electronic address: adeik@broadinstitute.org.

Clary B Clish (CB)

Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA. Electronic address: clary@broadinstitute.org.

Dolores Corella (D)

Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain. Electronic address: dolores.corella@uv.es.

Montserrat Fitó (M)

Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; IMIM Hospital del Mar Medical Research Institute, Grup de Risc Cardiovascular i Nutrició, Barcelona, Spain. Electronic address: MFito@imim.es.

Ramon Estruch (R)

Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain. Electronic address: restruch@clinic.cat.

Fernando Arós (F)

Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, Vitoria-Gasteiz, Spain; University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain. Electronic address: lfaborau@gmail.com.

Emilio Ros (E)

Lipid Clinic, Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain. Electronic address: EROS@clinic.cat.

Jesús García-Gavilan (J)

Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain. Electronic address: jesusfrancisco.garcia@iispv.cat.

Liming Liang (L)

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Electronic address: lliang@hsph.harvard.edu.

Jordi Salas-Salvadó (J)

Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere i Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain. Electronic address: jordi.salas@urv.cat.

Miguel A Martínez-González (MA)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain. Electronic address: mamartinez@unav.es.

Frank B Hu (FB)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. Electronic address: fhu@hsph.harvard.edu.

Marta Guasch-Ferré (M)

Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), University of Copenhagen, Copenhagen, Denmark. Electronic address: mguasch@hsph.harvard.edu.

Classifications MeSH