A rapid molecular diagnostic tool to discriminate alleles of avirulence genes and haplotypes of Phytophthora sojae using high-resolution melting analysis.
Phytophthora sojae
avirulence
disease diagnosis
effectors
high-resolution melting curve analysis
virulence
Journal
Molecular plant pathology
ISSN: 1364-3703
Titre abrégé: Mol Plant Pathol
Pays: England
ID NLM: 100954969
Informations de publication
Date de publication:
27 Nov 2023
27 Nov 2023
Historique:
revised:
02
10
2023
received:
29
04
2023
accepted:
03
11
2023
medline:
27
11
2023
pubmed:
27
11
2023
entrez:
27
11
2023
Statut:
aheadofprint
Résumé
Effectors encoded by avirulence genes (Avr) interact with the Phytophthora sojae resistance gene (Rps) products to generate incompatible interactions. The virulence profile of P. sojae is rapidly evolving as a result of the large-scale deployment of Rps genes in soybean. For a successful exploitation of Rps genes, it is recommended that soybean growers use cultivars containing the Rps genes corresponding to Avr genes present in P. sojae populations present in their fields. Determination of the virulence profile of P. sojae isolates is critical for the selection of soybean cultivars. High-resolution melting curve (HRM) analysis is a powerful tool, first applied in medicine, for detecting mutations with potential applications in different biological fields. Here, we report the development of an HRM protocol, as an original approach to discriminate effectors, to differentiate P. sojae haplotypes for six Avr genes. An HRM assay was performed on 24 P. sojae isolates with different haplotypes collected from soybean fields across Canada. The results clearly confirmed that the HRM assay discriminated different virulence genotypes. Moreover, the HRM assay was able to differentiate multiple haplotypes representing small allelic variations. HRM-based prediction was validated by phenotyping assays. This HRM assay provides a unique, cost-effective and efficient tool to predict virulence pathotypes associated with six different Avr (1b, 1c, 1d, 1k, 3a and 6) genes from P. sojae, which can be applied in the deployment of appropriate Rps genes in soybean fields.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Canada Research Chairs
Organisme : Genome Canada
Organisme : Ministère de l'Agriculture, des Pêcheries et de l'Alimentation
ID : the Program Prime-Vert #2 #19-002-2.2-C-ULAV
Informations de copyright
© 2023 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Références
Ali, S., Laurie, J.D., Linning, R., Cervantes-Chávez, J.A., Gaudet, D. & Bakkeren, G. (2014) An immunity-triggering effector from the barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLoS Pathogens, 10, e1004223.
Arsenault-Labrecque, G., Santhanam, P., Asselin, Y., Cinget, B., Lebreton, A., Labbé, C. et al. (2022) RXLR effector gene Avr3a from Phytophthora sojae is recognized by Rps8 in soybean. Molecular Plant Pathology, 23, 693-706.
Arsenault-Labrecque, G., Sonah, H., Lebreton, A., Labbé, C., Marchand, G., Xue, A. et al. (2018) Stable predictive markers for Phytophthora sojae avirulence genes that impair infection of soybean uncovered by whole genome sequencing of 31 isolates. BMC Biology, 16, 80.
Bezdicek, M., Lengerova, M., Ricna, D., Weinbergerova, B., Kocmanova, I., Volfova, P. et al. (2016) Rapid detection of fungal pathogens in bronchoalveolar lavage samples using panfungal PCR combined with high resolution melting analysis. Medical Mycology, 54, 714-724.
Brandfass, C. & Karlovsky, P. (2006) Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis. BMC Microbiology, 6, 4.
Caplan, J., Padmanabhan, M. & Dinesh-Kumar, S.P. (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host and Microbe, 3, 126-135.
Carpezat, J., Bothorel, S., Daverdin, G., Balesdent, M.H. & Leflon, M. (2014) Use of high resolution melting analysis to genotype the avirulence AvrLm4-7 gene of Leptosphaeria maculans, a fungal pathogen of Brassica napus. Annals of Applied Biology, 164, 430-440.
Chatzidimopoulos, M., Ganopoulos, I., Moraitou-Daponta, E., Lioliopoulou, F., Ntantali, O., Panagiotaki, P. et al. (2019) High-resolution melting (HRM) analysis reveals genotypic differentiation of Venturia inaequalis populations in Greece. Frontiers in Ecology and Evolution, 7, 489.
Chatzidimopoulos, M., Ganopoulos, I., Vellios, E., Madesis, P., Tsaftaris, A. & Pappas, A.C. (2014) Development of a two-step high-resolution melting (HRM) analysis for screening sequence variants associated with resistance to the QoIs, benzimidazoles and dicarboximides in airborne inoculum of Botrytis cinerea. FEMS Microbiology Letters, 360, 126-131.
Choi, G.E., Lee, S.M., Yi, J., Hwang, S.H., Kim, H.H., Lee, E.Y. et al. (2010) High-resolution melting curve analysis for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates. Journal of Clinical Microbiology, 48, 3893-3898.
Dorrance, A.E. (2018) Management of Phytophthora sojae of soybean: a review and future perspectives. Canadian Journal of Plant Pathology, 40, 210-219.
Dorrance, A.E., Mills, D., Robertson, A., Draper, M., Giesler, L. & Tenuta, A. (2007) Phytophthora root and stem rot of soybean. The Plant Health Instructor https://doi.org/10.1094/PHI-I-2007-0830-07
Dou, D., Kale, S.D., Liu, T., Tang, Q., Wang, X., Arredondo, F.D. et al. (2010) Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4 and Rps6. Molecular Plant-Microbe Interactions, 23, 425-435.
Dou, D., Kale, S.D., Wang, X., Jiang, R.H.Y., Bruce, N.A., Arredondo, F.D. et al. (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. The Plant Cell, 20, 1930-1947.
Druml, B. & Cichna-Markl, M. (2014) High resolution melting (HRM) analysis of DNA-its role and potential in food analysis. Food Chemistry, 158, 245-254.
Dussault-Benoit, C., Arsenault-Labrecque, G., Sonah, H., Belzile, F. & Bélanger, R.R. (2020) Discriminant haplotypes of avirulence genes of Phytophthora sojae lead to a molecular assay to predict phenotypes. Molecular Plant Pathology, 21, 318-329.
Duyvejonck, H., Cools, P., Decruyenaere, J., Roelens, K., Noens, L., Vermeulen, S. et al. (2015) Validation of high resolution melting analysis (HRM) of the amplified ITS2 region for the detection and identification of yeasts from clinical samples: comparison with culture and MALDI-TOF based identification. PLoS One, 10, e0132149.
FAOStat. (2021) Food and Agriculture Organization Corporate Statistical Database, Production Indices.
Forcelini, B.B., Lee, S., Oliveira, M.S. & Peres, N.A. (2018) Development of high-throughput SNP genotyping assays for rapid detection of strawberry Colletotrichum species and the G143A mutation. Phytopathology, 108, 1501-1508.
Galarza, M., Fasabi, M., Levano, K.S., Castillo, E., Barreda, N., Rodriguez, M. et al. (2016) High-resolution melting analysis for molecular detection of multidrug resistance tuberculosis in Peruvian isolates. BMC Infectious Diseases, 16, 260.
Ganopoulos, I., Madesis, P., Zambounis, A. & Tsaftaris, A. (2012) High-resolution melting analysis allowed fast and accurate closed-tube genotyping of Fusarium oxysporum formae speciales complex. FEMS Microbiology Letters, 334, 16-21.
Gao, H. & Bhattacharyya, M.K. (2008) The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences. BMC Plant Biology, 8, 29.
Gao, H., Narayanan, N.N., Ellison, L. & Bhattacharyya, M.K. (2005) Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean. Molecular Plant-Microbe Interactions, 18, 1035-1045.
Garganese, F., Ippolito, A., di Rienzo, V., Lotti, C., Montemurro, C. & Sanzani, S.M. (2018) A new high-resolution melting assay for genotyping Alternaria species causing citrus brown spot. Journal of the Science of Food and Agriculture, 98, 4578-4583.
Garritano, S., Gemignani, F., Voegele, C., Nguyen-Dumont, T., Le Calvez-Kelm, F., De Silva, D. et al. (2009) Determining the effectiveness of high resolution melting analysis for SNP genotyping and mutation scanning at the TP53 locus. BMC Genetics, 10, 5.
Gelaye, E., Mach, L., Kolodziejek, J., Grabherr, R., Loitsch, A., Achenbach, J.E. et al. (2017) A novel HRM assay for the simultaneous detection and differentiation of eight poxviruses of medical and veterinary importance. Scientific Reports, 7, 42892.
Herrmann, M.G., Durtschi, J.D., Bromley, L.K., Wittwer, C.T. & Voelkerding, K.V. (2006) Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clinical Chemistry, 52, 494-503.
Iida, Y., Van't Hof, P., Beenen, H., Mesarich, C., Kubota, M., Stergiopoulos, I. et al. (2015) Novel mutations detected in avirulence genes overcoming tomato Cf resistance genes in isolates of a Japanese population of Cladosporium fulvum. PLoS One, 10, e0123271.
Jiang, B., Cheng, Y., Cai, Z., Li, M., Jiang, Z., Ma, R. et al. (2020) Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing. BMC Genomics, 21, 280.
Lebreton, A., Labbé, C., De Ronne, M., Xue, A.G., Marchand, G. & Bélanger, R.R. (2018) Development of a simple hydroponic assay to study vertical and horizontal resistance of soybean and pathotypes of Phytophthora sojae. Plant Disease, 102, 114-123.
Madina, M.H., Santhanam, P., Asselin, Y., Jaswal, R. & Bélanger, R.R. (2022) Progress and challenges in elucidating the functional role of effectors in the soybean-Phytophthora sojae interaction. Journal of Fungi, 9, 12.
McCoy, A.G., Bélanger, R.R., Bradfield, C.A., Cerritos-Garcia, D.G., Garnica, V.C., Giesler, L.J. et al. (2023) A global-temporal perspective on Phytophthora sojae resistance-gene efficacy for disease management: a systematic review. Nature Communications, 14, 6043.
Montgomery, J., Wittwer, C.T., Palais, R. & Zhou, L. (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nature Protocols, 2, 59-66.
Navarro, E., Serrano-Heras, G., Castaño, M.J. & Solera, J. (2015) Real-time PCR detection chemistry. Clinica Chimica Acta, 439, 231-250.
Qutob, D., Tedman-Jones, J., Dong, S., Kuflu, K., Pham, H., Wang, Y. et al. (2009) Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a. PLoS One, 4, e5066.
Rasoolizadeh, A., Santhanam, P., Labbé, C., Shivaraj, S.M., Germain, H. & Bélanger, R.R. (2020) Silicon influences the localization and expression of Phytophthora sojae effectors in interaction with soybean. Journal of Experimental Botany, 71, 6844-6855.
Rebello, C.S., Wang, N.-Y., Marin, M.V., Baggio, J.S. & Peres, N.A. (2023) Detection and species differentiation of Neopestalotiopsis spp. from strawberry (Fragaria × ananassa) in Florida using a high-resolution melting analysis. PhytoFrontiers, 3, 156-163.
Rep, M., Van Does, H.C., Der, M., M., Van Wijk, R., Houterman, P.M. et al. (2004) A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 53, 1373-1383.
Rocafort, M., Arshed, S., Hudson, D., Sidhu, J.S., Bowen, J.K., Plummer, K.M. et al. (2022) CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis. Fungal Biology, 126, 35-46.
Sandhu, D., Gao, H., Cianzio, S. & Bhattacharyya, M.K. (2004) Deletion of a disease resistance nucleotide-binding-site leucine-rich-repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics, 168, 2157-2167.
Santhanam, P., Madina, M.H., Albuini, F.M., Labbé, C., Fietto, L.G. & Bélanger, R.R. (2023) A unique effector secreted by Pseudozyma flocculosa mediates its biocontrol activity. BMC Biology, 21, 118.
Schiwek, S., Beule, L., Vinas, M., Pfordt, A., Von Tiedemann, A. & Karlovsky, P. (2020) High-resolution melting (HRM) curve assay for the identification of eight Fusarium species causing ear rot in maize. Pathogens, 9, 270.
Tong, S.Y.C. & Giffard, P.M. (2012) Microbiological applications of high-resolution melting analysis. Journal of Clinical Microbiology, 50, 3418-3421.
Toruño, T.Y., Stergiopoulos, I. & Coaker, G. (2016) Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual Review of Phytopathology, 54, 419-441.
Tremblay, V., McLaren, D.L., Kim, Y.M., Strelkov, S.E., Conner, R.L., Wally, O. et al. (2021) Molecular assessment of pathotype diversity of Phytophthora sojae in Canada highlights declining sources of resistance in soybean. Plant Disease, 105, 4006-4013.
Twist, G.P., Gaedigk, R., Steven Leeder, J. & Gaedigk, A. (2013) High-resolution melt analysis to detect sequence variations in highly homologous gene regions: application to CYP2B6. Pharmacogenomics, 14, 913-922.
Tyler, B.M. (2007) Phytophthora sojae: root rot pathogen of soybean and model oomycete. Molecular Plant Pathology, 8, 1-8.
USDA Crop Production. (2019) Summary. National Agricultural Statistics Service.
Wang, N.Y., Gama, A.B., Marin, M.V. & Peres, N.A. (2021) Development of a multiplex high-throughput diagnostic assay for the detection of strawberry crown rot diseases using high-resolution melting analysis. Phytopathology, 111, 1470-1483.
Werth, S., Reynisdóttir, S., Gudmundsson, H. & Andrésson, Ó.S. (2016) A fast and inexpensive high-throughput protocol for isolating high molecular weight genomic DNA from lichens. Herzogia, 29, 610.
Whisson, S.C., Boevink, P.C., Moleleki, L., Avrova, A.O., Morales, J.G., Gilroy, E.M. et al. (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 450, 115-118.
Xanthopoulou, A., Ganopoulos, I., Tryfinopoulou, P., Panagou, E.Z., Osanthanunkul, M., Madesis, P. et al. (2019) Rapid and accurate identification of black aspergilli from grapes using high-resolution melting (HRM) analysis. Journal of the Science of Food and Agriculture, 99, 309-314.
Xue, A.G., Marchand, G., Chen, Y., Zhang, S., Cober, E.R. & Tenuta, A. (2015) Races of Phytophthora sojae in Ontario, Canada, 2010-2012. Canadian Journal of Plant Pathology, 37, 376-383.
Yan, H. & Nelson, B. (2019) Adaptation of Phytophthora sojae to Rps resistance genes over the past two decades in North Dakota. Plant Health Progress, 20, 88-93.