Roles of the CCR4-Not complex in translation and dynamics of co-translation events.
Ccr4-Not
Not5 ribosome interaction
codon optimality
repression of translation initiation
translation elongation dynamics
Journal
Wiley interdisciplinary reviews. RNA
ISSN: 1757-7012
Titre abrégé: Wiley Interdiscip Rev RNA
Pays: United States
ID NLM: 101536955
Informations de publication
Date de publication:
27 Nov 2023
27 Nov 2023
Historique:
revised:
06
10
2023
received:
20
06
2023
accepted:
30
10
2023
medline:
27
11
2023
pubmed:
27
11
2023
entrez:
27
11
2023
Statut:
aheadofprint
Résumé
The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells that is most well-known to repress gene expression. Delivery of the complex to mRNAs through a multitude of distinct mechanisms accelerates their decay, yet Ccr4-Not also plays an important role in co-translational processes, such as co-translational association of proteins and delivery of translating mRNAs to organelles. The recent structure of Not5 interacting with the translated ribosome has brought to light that embedded information within the codon sequence can be monitored by recruitment of the Ccr4-Not complex to elongating ribosomes. Thereby, the Ccr4-Not complex is empowered with regulatory decisions determining the fate of proteins being synthesized and their encoding mRNAs. This review will focus on the roles of the complex in translation and dynamics of co-translation events. This article is categorized under: Translation > Mechanisms Translation > Regulation.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1827Subventions
Organisme : Cancer Research UK
ID : A17196
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A31287
Pays : United Kingdom
Informations de copyright
© 2023 The Authors. WIREs RNA published by Wiley Periodicals LLC.
Références
Absmeier, E., Chandrasekaran, V., O'Reilly, F. J., Stowell, J. A. W., Rappsilber, J., & Passmore, L. A. (2023). Specific recognition and ubiquitination of translating ribosomes by mammalian CCR4-NOT. Nature Structural & Molecular Biology, 30(9), 1314-1322. https://doi.org/10.1038/s41594-023-01075-8
Allen, G., Panasenko, O., Villanyi, Z., Zagatti, M., Weiss, B., Pagliazzo, L., Huch, S., Polte, C., Zahoran, S., Hughes, C. S., Pelechano, V., Ignatova, Z., & Collart, M. A. (2021). Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A. Cell Reports, 36(9), 109633. https://doi.org/10.1016/j.celrep.2021.109633
Allen, G., Weiss, B., Panasenko, O. H. S., Villanyi, Z., Albert, B., Dilg, D., Zagatti, M., Schaughency, P., Liao, S. E., Corden, J., Polte, C., Shore, D., Ignatova, Z., Pelechano, V., & Collart, M. A. (2023). Not1 and Not4 inversely determine mRNA solubility that sets the dynamics of co-translational events. Genome Biology, 24(1), 30. https://doi.org/10.1186/s13059-023-02871-7
Arae, T., Morita, K., Imahori, R., Suzuki, Y., Yasuda, S., Sato, T., Yamaguchi, J., & Chiba, Y. (2019). Identification of Arabidopsis CCR4-NOT complexes with Pumilio RNA-binding proteins, APUM5 and APUM2. Plant & Cell Physiology, 60(9), 2015-2025. https://doi.org/10.1093/pcp/pcz089
Arpat, A. B., Liechti, A., De Matos, M., Dreos, R., Janich, P., & Gatfield, D. (2020). Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Research, 30(7), 985-999. https://doi.org/10.1101/gr.257741.119
Azzouz, N., Panasenko, O., Deluen, C., Hsieh, J., Theiler, G., & Collart, M. A. (2009). Specific roles for the Ccr4-Not complex subunits in expression of the genome. RNA, 15(3), 377-383. https://doi.org/10.1261/rna.1348209
Bai, Y., Salvadore, C., Chiang, Y. C., Collart, M. A., Liu, H. Y., & Denis, C. L. (1999). The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Molecular and Cellular Biology, 19(10), 6642-6651. https://doi.org/10.1128/MCB.19.10.6642
Basquin, J., Roudko, V. V., Rode, M., Basquin, C., Seraphin, B., & Conti, E. (2012). Architecture of the nuclease module of the yeast Ccr4-not complex: The Not1-Caf1-Ccr4 interaction. Molecular Cell, 48(2), 207-218. https://doi.org/10.1016/j.molcel.2012.08.014
Beilharz, T. H., & Preiss, T. (2007). Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA, 13(7), 982-997. https://doi.org/10.1261/rna.569407
Ben-Shem, A., Papai, G., & Schultz, P. (2021). Architecture of the multi-functional SAGA complex and the molecular mechanism of holding TBP. The FEBS Journal, 288(10), 3135-3147. https://doi.org/10.1111/febs.15563
Bhaskar, V., Basquin, J., & Conti, E. (2015). Architecture of the ubiquitylation module of the yeast Ccr4-Not complex. Structure, 23(5), 921-928. https://doi.org/10.1016/j.str.2015.03.011
Bui, D. C., Son, H., Shin, J. Y., Kim, J. C., Kim, H., Choi, G. J., & Lee, Y. W. (2016). The FgNot3 subunit of the Ccr4-Not complex regulates vegetative growth, sporulation, and virulence in fusarium graminearum. PLoS One, 11(1), e0147481. https://doi.org/10.1371/journal.pone.0147481
Buschauer, R., Matsuo, Y., Sugiyama, T., Chen, Y. H., Alhusaini, N., Sweet, T., Ikeuchi, K., Cheng, J., Matsuki, Y., Nobuta, R., Gilmozzi, A., Berninghausen, O., Tesina, P., Becker, T., Coller, J., Inada, T., & Beckmann, R. (2020). The Ccr4-Not complex monitors the translating ribosome for codon optimality. Science, 368(6488), 1-12. https://doi.org/10.1126/science.aay6912
Chapat, C., Jafarnejad, S. M., Matta-Camacho, E., Hesketh, G. G., Gelbart, I. A., Attig, J., Gkogkas, C. G., Alain, T., Stern-Ginossar, N., Fabian, M. R., Gingras, A. C. Duchaine, T. F., & Sonenberg, N. (2017). Cap-binding protein 4EHP effects translation silencing by microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 114(21), 5425-5430. https://doi.org/10.1073/pnas.1701488114
Chen, J., Rappsilber, J., Chiang, Y. C., Russell, P., Mann, M., & Denis, C. L. (2001). Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex. Journal of Molecular Biology, 314(4), 683-694. https://doi.org/10.1006/jmbi.2001.5162
Chen, S., Allen, G., Panasenko, O., & Collart, M. A. (2023). Not4-dependent targeting of MMF1 mRNA to mitochondria limits its expression via ribosome pausing, Egd1 ubiquitination, Caf130, no-go-decay and autophagy. Nucleic Acids Research, 51(10), 5022-5039. https://doi.org/10.1093/nar/gkad299
Chen, Y., Boland, A., Kuzuoglu-Ozturk, D., Bawankar, P., Loh, B., Chang, C. T., Weichenrieder, O., & Izaurralde, E. (2014). A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Molecular Cell, 54(5), 737-750. https://doi.org/10.1016/j.molcel.2014.03.034
Cheon, Y., Kim, H., Park, K., Kim, M., & Lee, D. (2020). Dynamic modules of the coactivator SAGA in eukaryotic transcription. Experimental & Molecular Medicine, 52(7), 991-1003. https://doi.org/10.1038/s12276-020-0463-4
Collart, M. A., Kassem, S., & Villanyi, Z. (2017). Mutations in the NOT genes or in the translation machinery similarly display increased resistance to histidine starvation. Frontiers in Genetics, 8, 61. https://doi.org/10.3389/fgene.2017.00061
Collart, M. A., & Struhl, K. (1993). CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. The EMBO Journal, 12(1), 177-186. https://doi.org/10.1002/j.1460-2075.1993.tb05643.x
Collart, M. A., & Struhl, K. (1994). NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes & Development, 8(5), 525-537. https://doi.org/10.1101/gad.8.5.525
Cooke, A., Prigge, A., & Wickens, M. (2010). Translational repression by deadenylases. The Journal of Biological Chemistry, 285(37), 28506-28513. https://doi.org/10.1074/jbc.M110.150763
Cooper, K. F., Scarnati, M. S., Krasley, E., Mallory, M. J., Jin, C., Law, M. J., & Strich, R. (2012). Oxidative-stress-induced nuclear to cytoplasmic relocalization is required for Not4-dependent cyclin C destruction. Journal of Cell Science, 125(Pt 4), 1015-1026. https://doi.org/10.1242/jcs.096479
Courel, M., Clement, Y., Bossevain, C., Foretek, D., Vidal Cruchez, O., Yi, Z., Bénard, M., Benassy, M.-N., Kress, M., Vindry, C., Ernoult-Lange, M., Antoniewski, C., Morillon, A., Brest, P., Hubstenberger, A., Roest Crollius, H., Standart, N., & Weil, D. (2019). GC content shapes mRNA storage and decay in human cells. eLife, 8, 1-32. https://doi.org/10.7554/eLife.49708
Daskalaki, I., Markaki, M., Gkikas, I., & Tavernarakis, N. (2023). Local coordination of mRNA storage and degradation near mitochondria modulates C. elegans ageing. The EMBO Journal, 42(16), e112446. https://doi.org/10.15252/embj.2022112446
Daugeron, M. C., Mauxion, F., & Seraphin, B. (2001). The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Research, 29(12), 2448-2455. https://doi.org/10.1093/nar/29.12.2448
De Keersmaecker, K., Atak, Z. K., Li, N., Vicente, C., Patchett, S., Girardi, T., Gianfelici, V., Geerdens, E., Clappier, E., Porcu, M., Lahortiga, I., Rossella, L., Yan, J., Hulselmans, G., Vranckx, H., Vandepoel, R., Sweron, B., Jacobs, K., Mentens, N., … Cools, J. (2013). Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nature Genetics, 45(2), 186-190. https://doi.org/10.1038/ng.2508
Dimitrova, L. N., Kuroha, K., Tatematsu, T., & Inada, T. (2009). Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. The Journal of Biological Chemistry, 284(16), 10343-10352. https://doi.org/10.1074/jbc.M808840200
Du, H., Chen, C., Wang, Y., Yang, Y., Che, Z., Liu, X., Meng, S., Guo, C., Xu, M., Fang, H., Wang, F., Lin, C., & Luo, Z. (2020). RNF219 interacts with CCR4-NOT in regulating stem cell differentiation. Journal of Molecular Cell Biology, 12(11), 894-905. https://doi.org/10.1093/jmcb/mjaa061
Duy, D. L., Suda, Y., & Irie, K. (2017). Cytoplasmic deadenylase Ccr4 is required for translational repression of LRG1 mRNA in the stationary phase. PLoS One, 12(2), e0172476. https://doi.org/10.1371/journal.pone.0172476
Elias-Villalobos, A., Toullec, D., Faux, C., Seveno, M., & Helmlinger, D. (2019). Chaperone-mediated ordered assembly of the SAGA and NuA4 transcription co-activator complexes in yeast. Nature Communications, 10(1), 5237. https://doi.org/10.1038/s41467-019-13243-w
Fabian, M. R., Cieplak, M. K., Frank, F., Morita, M., Green, J., Srikumar, T., Nagar, B., Yamamoto, T., Raught, B., Duchaine T. F., & Sonenberg, N. (2011). miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nature Structural & Molecular Biology, 18(11), 1211-1217. https://doi.org/10.1038/nsmb.2149
Fabian, M. R., Frank, F., Rouya, C., Siddiqui, N., Lai, W. S., Karetnikov, A., Blackshear, P. J., Nagar, B., & Sonenberg, N. (2013). Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nature Structural & Molecular Biology, 20(6), 735-739. https://doi.org/10.1038/nsmb.2572
Faraji, F., Hu, Y., Wu, G., Goldberger, N. E., Walker, R. C., Zhang, J., & Hunter, K. W. (2014). An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease. Genome Research, 24(2), 227-240. https://doi.org/10.1101/gr.166223.113
Faraji, F., Hu, Y., Yang, H. H., Lee, M. P., Winkler, G. S., Hafner, M., & Hunter, K. W. (2016). Post-transcriptional control of tumor cell autonomous metastatic potential by CCR4-NOT deadenylase CNOT7. PLoS Genetics, 12(1), e1005820. https://doi.org/10.1371/journal.pgen.1005820
Finoux, A. L., & Seraphin, B. (2006). In vivo targeting of the yeast Pop2 deadenylase subunit to reporter transcripts induces their rapid degradation and generates new decay intermediates. The Journal of Biological Chemistry, 281(36), 25940-25947. https://doi.org/10.1074/jbc.M600132200
Fu, X., Sokolova, V., Webb, K. J., Old, W., & Park, S. (2018). Ubiquitin-dependent switch during assembly of the proteasomal ATPases mediated by Not4 ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 115(52), 13246-13251. https://doi.org/10.1073/pnas.1805353115
Galicia-Vazquez, G., Chu, J., & Pelletier, J. (2015). eIF4AII is dispensable for miRNA-mediated gene silencing. RNA, 21(10), 1826-1833. https://doi.org/10.1261/rna.052225.115
Gehrke, S., Wu, Z., Klinkenberg, M., Sun, Y., Auburger, G., Guo, S., & Lu, B. (2015). PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metabolism, 21(1), 95-108. https://doi.org/10.1016/j.cmet.2014.12.007
Gillen, S. L., Giacomelli, C., Hodge, K., Zanivan, S., Bushell, M., & Wilczynska, A. (2021). Differential regulation of mRNA fate by the human Ccr4-Not complex is driven by coding sequence composition and mRNA localization. Genome Biology, 22(1), 284. https://doi.org/10.1186/s13059-021-02494-w
Gillen, S. L., Waldron, J. A., & Bushell, M. (2021). Codon optimality in cancer. Oncogene, 40(45), 6309-6320. https://doi.org/10.1038/s41388-021-02022-x
Gingold, H., Tehler, D., Christoffersen, N. R., Nielsen, M. M., Asmar, F., Kooistra, S. M., Christophersen, M. S., Christensen, L. L., Borre, M., Søorensen, K. D., Andersen, L. D., Andersen, C. L., Hulleman, E., Wurdinger, T., Ralfkiaer, E., Helin, K., Grønbaeak, K., Ørntoft, T., Waszak, S. M., … Pilpel, Y. (2014). A dual program for translation regulation in cellular proliferation and differentiation. Cell, 158(6), 1281-1292. https://doi.org/10.1016/j.cell.2014.08.011
Goldstrohm, A. C., & Wickens, M. (2008). Multifunctional deadenylase complexes diversify mRNA control. Nature Reviews. Molecular Cell Biology, 9(4), 337-344. https://doi.org/10.1038/nrm2370
Grigull, J., Mnaimneh, S., Pootoolal, J., Robinson, M. D., & Hughes, T. R. (2004). Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Molecular and Cellular Biology, 24(12), 5534-5547. https://doi.org/10.1128/MCB.24.12.5534-5547.2004
Guenole, A., Velilla, F., Chartier, A., Rich, A., Carvunis, A. R., Sardet, C., Simonelig, M., & Sobhian, B. (2022). RNF219 regulates CCR4-NOT function in mRNA translation and deadenylation. Scientific Reports, 12(1), 9288. https://doi.org/10.1038/s41598-022-13309-8
Gulshan, K., Thommandru, B., & Moye-Rowley, W. S. (2012). Proteolytic degradation of the Yap1 transcription factor is regulated by subcellular localization and the E3 ubiquitin ligase Not4. The Journal of Biological Chemistry, 287(32), 26796-26805. https://doi.org/10.1074/jbc.M112.384719
Halter, D., Collart, M. A., & Panasenko, O. (2014). The Not4 E3 ligase and CCR4 deadenylase play distinct roles in protein quality control. PLoS One, 9(1), e86218. https://doi.org/10.1371/journal.pone.0086218
Hanzawa, H., de Ruwe, M. J., Albert, T. K., van Der Vliet, P. C., Timmers, H. T., & Boelens, R. (2001). The structure of the C4C4 RING finger of human NOT4 reveals features distinct from those of C3HC4 RING fingers. The Journal of Biological Chemistry, 276(13), 10185-10190. https://doi.org/10.1074/jbc.M009298200
Hart, K. J., Oberstaller, J., Walker, M. P., Minns, A. M., Kennedy, M. F., Padykula, I., Adams, J. H., & Lindner, S. E. (2019). Plasmodium male gametocyte development and transmission are critically regulated by the two putative deadenylases of the CAF1/CCR4/NOT complex. PLoS Pathogens, 15(1), e1007164. https://doi.org/10.1371/journal.ppat.1007164
Hernandez, N. (1993). TBP, a universal eukaryotic transcription factor? Genes & Development, 7(7B), 1291-1308. https://doi.org/10.1101/gad.7.7b.1291
Hia, F., Yang, S. F., Shichino, Y., Yoshinaga, M., Murakawa, Y., Vandenbon, A., Fukao, A., Fujiwara, T., Landthaler, M., Natsume, T., Adachi, S., Iwasaki, S., & Takeuchi, O. (2019). Codon bias confers stability to human mRNAs. EMBO Reports, 20(11), e48220. https://doi.org/10.15252/embr.201948220
Hoekema, A., Kastelein, R. A., Vasser, M., & de Boer, H. A. (1987). Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: Experimental approach to study the role of biased codon usage in gene expression. Molecular and Cellular Biology, 7(8), 2914-2924. https://doi.org/10.1128/mcb.7.8.2914-2924.1987
Hopfler, M., Absmeier, E., Peak-Chew, S. Y., Vartholomaiou, E., Passmore, L. A., Gasic, I., & Hegde, R. S. (2023). Mechanism of ribosome-associated mRNA degradation during tubulin autoregulation. Molecular Cell, 83(13), 2290-2302.e2213. https://doi.org/10.1016/j.molcel.2023.05.020
Hu, W., Sweet, T. J., Chamnongpol, S., Baker, K. E., & Coller, J. (2009). Co-translational mRNA decay in Saccharomyces cerevisiae. Nature, 461(7261), 225-229. https://doi.org/10.1038/nature08265
Huang, F., Chandrasekharan, M. B., Chen, Y. C., Bhaskara, S., Hiebert, S. W., & Sun, Z. W. (2010). The JmjN domain of Jhd2 is important for its protein stability, and the plant homeodomain (PHD) finger mediates its chromatin association independent of H3K4 methylation. The Journal of Biological Chemistry, 285(32), 24548-24561. https://doi.org/10.1074/jbc.M110.117333
Hubstenberger, A., Courel, M., Benard, M., Souquere, S., Ernoult-Lange, M., Chouaib, R., Yi, Z., Morlot, J. B., Munier, A., Fradet, M., Daunesse, M., Bertrand, E., Pierron, G., Mozziconacci, J., Kress, M., & Weil, D. (2017). P-body purification reveals the condensation of repressed mRNA regulons. Molecular Cell, 68(1), 144-157 e145. https://doi.org/10.1016/j.molcel.2017.09.003
Ikeuchi, K., Ivic, N., Buschauer, R., Cheng, J., Frohlich, T., Matsuo, Y., Berninghausen, O., Inada, T., Becker, T., & Beckmann, R. (2023). Molecular basis for recognition and deubiquitination of 40S ribosomes by Otu2. Nature Communications, 14(1), 2730. https://doi.org/10.1038/s41467-023-38161-w
Ikeuchi, K., Tesina, P., Matsuo, Y., Sugiyama, T., Cheng, J., Saeki, Y., Tanaka, K., Becker, T., Beckmann, R., & Inada, T. (2019). Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. The EMBO Journal, 38(5), 1-21. https://doi.org/10.15252/embj.2018100276
Ito, K., Takahashi, A., Morita, M., Suzuki, T., & Yamamoto, T. (2011). The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability. Protein & Cell, 2(9), 755-763. https://doi.org/10.1007/s13238-011-1092-4
Jeske, M., Meyer, S., Temme, C., Freudenreich, D., & Wahle, E. (2006). Rapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from Drosophila embryos. The Journal of Biological Chemistry, 281(35), 25124-25133. https://doi.org/10.1074/jbc.M604802200-21
Kamenova, I., Mukherjee, P., Conic, S., Mueller, F., El-Saafin, F., Bardot, P., Garnier, J.-M., Dembele, D., Capponi, S., Timmers, H. T. M., Vincent, S. D., & Tora, L. (2019). Co-translational assembly of mammalian nuclear multisubunit complexes. Nature Communications, 10(1), 1740. https://doi.org/10.1038/s41467-019-09749-y
Kamenska, A., Lu, W. T., Kubacka, D., Broomhead, H., Minshall, N., Bushell, M., & Standart, N. (2014). Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing. Nucleic Acids Research, 42(5), 3298-3313. https://doi.org/10.1093/nar/gkt1265
Kapp, L. D., & Lorsch, J. R. (2004). The molecular mechanics of eukaryotic translation. Annual Review of Biochemistry, 73, 657-704. https://doi.org/10.1146/annurev.biochem.73.030403.080419
Kassem, S., Villanyi, Z., & Collart, M. A. (2017). Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA. Nucleic Acids Research, 45(3), 1186-1199. https://doi.org/10.1093/nar/gkw1059
Keskeny, C., Raisch, T., Sgromo, A., Igreja, C., Bhandari, D., Weichenrieder, O., & Izaurralde, E. (2019). A conserved CAF40-binding motif in metazoan NOT4 mediates association with the CCR4-NOT complex. Genes & Development, 33(3-4), 236-252. https://doi.org/10.1101/gad.320952.118
Khan, K., & Fox, P. L. (2023). Benefits of co-translational complex assembly for cellular fitness. BioEssays, 45(5), e2300024. https://doi.org/10.1002/bies.202300024
Kramer, G., Shiber, A., & Bukau, B. (2019). Mechanisms of cotranslational maturation of newly synthesized proteins. Annual Review of Biochemistry, 88, 337-364. https://doi.org/10.1146/annurev-biochem-013118-111717
Kumar, P., Hellen, C. U., & Pestova, T. V. (2016). Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes & Development, 30(13), 1573-1588. https://doi.org/10.1101/gad.282418.116
Kuzuoglu-Ozturk, D., Bhandari, D., Huntzinger, E., Fauser, M., Helms, S., & Izaurralde, E. (2016). miRISC and the CCR4-NOT complex silence mRNA targets independently of 43S ribosomal scanning. The EMBO Journal, 35(11), 1186-1203. https://doi.org/10.15252/embj.201592901
Lesnik, C., Cohen, Y., Atir-Lande, A., Schuldiner, M., & Arava, Y. (2014). OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria. Nature Communications, 5, 5711. https://doi.org/10.1038/ncomms6711
Lim, J., Lee, M., Son, A., Chang, H., & Kim, V. N. (2016). mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes & Development, 30(14), 1671-1682. https://doi.org/10.1101/gad.284802.116
Lima, S. A., Chipman, L. B., Nicholson, A. L., Chen, Y. H., Yee, B. A., Yeo, G. W., Coller, J., & Pasquinelli, A. E. (2017). Short poly(A) tails are a conserved feature of highly expressed genes. Nature Structural & Molecular Biology, 24(12), 1057-1063. https://doi.org/10.1038/nsmb.3499
Ma, W., & Mayr, C. (2018). A membraneless organelle associated with the endoplasmic reticulum enables 3′UTR-mediated protein-protein interactions. Cell, 175(6), 1492-1506.e1419. https://doi.org/10.1016/j.cell.2018.10.007
Mathys, H., Basquin, J., Ozgur, S., Czarnocki-Cieciura, M., Bonneau, F., Aartse, A., Dziembowski, A., Nowotny, M., Conti, E., & Filipowicz, W. (2014). Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Molecular Cell, 54(5), 751-765. https://doi.org/10.1016/j.molcel.2014.03.036
Mauxion, F., Basquin, J., Ozgur, S., Rame, M., Albrecht, J., Schafer, I., Séraphin, B., & Conti, E. (2023). The human CNOT1-CNOT10-CNOT11 complex forms a structural platform for protein-protein interactions. Cell Reports, 42(1), 111902. https://doi.org/10.1016/j.celrep.2022.111902
Mauxion, F., Preve, B., & Seraphin, B. (2013). C2ORF29/CNOT11 and CNOT10 form a new module of the CCR4-NOT complex. RNA Biology, 10(2), 267-276. https://doi.org/10.4161/rna.23065
Meijer, H. A., Kong, Y. W., Lu, W. T., Wilczynska, A., Spriggs, R. V., Robinson, S. W., Godfrey, J. D., Willis, A. E., & Bushell, M. (2013). Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science, 340(6128), 82-85. https://doi.org/10.1126/science.1231197
Meijer, H. A., Schmidt, T., Gillen, S. L., Langlais, C., Jukes-Jones, R., de Moor, C. H., Cain, K., Wilczynska, A., & Bushell, M. (2019). DEAD-box helicase eIF4A2 inhibits CNOT7 deadenylation activity. Nucleic Acids Research, 47(15), 8224-8238. https://doi.org/10.1093/nar/gkz509
Mersman, D. P., Du, H. N., Fingerman, I. M., South, P. F., & Briggs, S. D. (2009). Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression. Genes & Development, 23(8), 951-962. https://doi.org/10.1101/gad.1769209
Minshall, N., Reiter, M. H., Weil, D., & Standart, N. (2007). CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. The Journal of Biological Chemistry, 282(52), 37389-37401. https://doi.org/10.1074/jbc.M704629200
Morales-Polanco, F., Lee, J. H., Barbosa, N. M., & Frydman, J. (2022). Cotranslational mechanisms of protein biogenesis and complex assembly in eukaryotes. Annual Review of Biomedical Data Science, 5, 67-94. https://doi.org/10.1146/annurev-biodatasci-121721-095858
Mugler, C. F., Hondele, M., Heinrich, S., Sachdev, R., Vallotton, P., Koek, A. Y., Chan, L. Y., & Weis, K. (2016). ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. eLife, 5, 1-27. https://doi.org/10.7554/eLife.18746
Nishimura, T., Padamsi, Z., Fakim, H., Milette, S., Dunham, W. H., Gingras, A. C., & Fabian, M. R. (2015). The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5′ and 3′ termini of target mRNAs. Cell Reports, 11(9), 1425-1436. https://doi.org/10.1016/j.celrep.2015.04.065
Oberholzer, U., & Collart, M. A. (1998). Characterization of NOT5 that encodes a new component of the NOT protein complex. Gene, 207(1), 61-69. https://doi.org/10.1016/s0378-1119(97)00605-7
Panasenko, O., & Collart, M. A. (2011). Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Molecular and Cellular Biology, 31(8), 1610-1623. https://doi.org/10.1128/MCB.01210-10
Panasenko, O., Landrieux, E., Feuermann, M., Finka, A., Paquet, N., & Collart, M. A. (2006). The yeast Ccr4-Not complex controls ubiquitination of the nascent-associated polypeptide (NAC-EGD) complex. The Journal of Biological Chemistry, 281(42), 31389-31398. https://doi.org/10.1074/jbc.M604986200
Panasenko, O., Somasekharan, S. P., Villanyi, Z., Zagatti, M., Bezrukov, F., Rashpa, R., Cornut, J., Iqbal, J., Longis, M., Carl, S. H., Pena, C., Panse, V. G., & Collart, M. A. (2019). Co-translational assembly of proteasome subunits in NOT1-containing assemblysomes. Nature Structural & Molecular Biology, 26(2), 110-120. https://doi.org/10.1038/s41594-018-0179-5
Panasenko, O. O., & Collart, M. A. (2012). Presence of Not5 and ubiquitinated Rps7A in polysome fractions depends upon the Not4 E3 ligase. Molecular Microbiology, 83(3), 640-653. https://doi.org/10.1111/j.1365-2958.2011.07957.x
Pelechano, V., Wei, W., & Steinmetz, L. M. (2015). Widespread co-translational RNA decay reveals ribosome dynamics. Cell, 161(6), 1400-1412. https://doi.org/10.1016/j.cell.2015.05.008
Pelechano, V., Wei, W., & Steinmetz, L. M. (2016). Genome-wide quantification of 5′-phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nature Protocols, 11(2), 359-376. https://doi.org/10.1038/nprot.2016.026
Petit, A. P., Wohlbold, L., Bawankar, P., Huntzinger, E., Schmidt, S., Izaurralde, E., & Weichenrieder, O. (2012). The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Research, 40(21), 11058-11072. https://doi.org/10.1093/nar/gks883
Pillet, B., Mendez-Godoy, A., Murat, G., Favre, S., Stumpe, M., Falquet, L., & Kressler, D. (2022). Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. eLife, 11, 1-43. https://doi.org/10.7554/eLife.74255
Poetz, F., Corbo, J., Levdansky, Y., Spiegelhalter, A., Lindner, D., Magg, V., Lebedeva, S., Schweiggert, J., Schott, J., Valkov, E., & Stoecklin, G. (2021). RNF219 attenuates global mRNA decay through inhibition of CCR4-NOT complex-mediated deadenylation. Nature Communications, 12(1), 7175. https://doi.org/10.1038/s41467-021-27471-6
Preissler, S., Reuther, J., Koch, M., Scior, A., Bruderek, M., Frickey, T., & Deuerling, E. (2015). Not4-dependent translational repression is important for cellular protein homeostasis in yeast. The EMBO Journal, 34(14), 1905-1924. https://doi.org/10.15252/embj.201490194
Presnyak, V., Alhusaini, N., Chen, Y. H., Martin, S., Morris, N., Kline, N., Olson, S., Weinberg, D., Baker, K. E., Grayeley, B. R., & Coller, J. (2015). Codon optimality is a major determinant of mRNA stability. Cell, 160(6), 1111-1124. https://doi.org/10.1016/j.cell.2015.02.029
Radhakrishnan, A., Chen, Y. H., Martin, S., Alhusaini, N., Green, R., & Coller, J. (2016). The DEAD-box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality. Cell, 167(1), 122-132.e129. https://doi.org/10.1016/j.cell.2016.08.053
Raisch, T., Sandmeir, F., Weichenrieder, O., Valkov, E., & Izaurralde, E. (2018). Structural and biochemical analysis of a NOT1 MIF4G-like domain of the CCR4-NOT complex. Journal of Structural Biology, 204(3), 388-395. https://doi.org/10.1016/j.jsb.2018.10.009
Raisch, T., & Valkov, E. (2022). Regulation of the multisubunit CCR4-NOT deadenylase in the initiation of mRNA degradation. Current Opinion in Structural Biology, 77, 102460. https://doi.org/10.1016/j.sbi.2022.102460
Rouya, C., Siddiqui, N., Morita, M., Duchaine, T. F., Fabian, M. R., & Sonenberg, N. (2014). Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA, 20(9), 1398-1409. https://doi.org/10.1261/rna.045302.114
Sandler, H., Kreth, J., Timmers, H. T., & Stoecklin, G. (2011). Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Research, 39(10), 4373-4386. https://doi.org/10.1093/nar/gkr011
Shaiken, T. E., Grimm, S. L., Siam, M., Williams, A., Rezaeian, A. H., Kraushaar, D., Ricco, E., Robertson, M. J., Coarfa, C., Jain, A., Malovannaya, A., Stossi, F., Opekun, A. R., Price, A. P., & Dubrulle, J. (2023). Transcriptome, proteome, and protein synthesis within the intracellular cytomatrix. iScience, 26(2), 105965. https://doi.org/10.1016/j.isci.2023.105965
Shiber, A., Doring, K., Friedrich, U., Klann, K., Merker, D., Zedan, M., Tippmann, F., Kramer, G., & Bukau, B. (2018). Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature, 561(7722), 268-272. https://doi.org/10.1038/s41586-018-0462-y
Shirokikh, N. E., Dutikova, Y. S., Staroverova, M. A., Hannan, R. D., & Preiss, T. (2019). Migration of small ribosomal subunits on the 5′ untranslated regions of capped messenger RNA. International Journal of Molecular Sciences, 20(18), 1-25. https://doi.org/10.3390/ijms20184464
Sokabe, M., & Fraser, C. S. (2017). A helicase-independent activity of eIF4A in promoting mRNA recruitment to the human ribosome. Proceedings of the National Academy of Sciences of the United States of America, 114(24), 6304-6309. https://doi.org/10.1073/pnas.1620426114
Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H., & Bartel, D. P. (2014). Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature, 508(7494), 66-71. https://doi.org/10.1038/nature13007
Svitkin, Y. V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G. J., & Sonenberg, N. (2001). The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA, 7(3), 382-394. https://doi.org/10.1017/s135583820100108x
Takehara, Y., Yashiroda, H., Matsuo, Y., Zhao, X., Kamigaki, A., Matsuzaki, T., Kosako, H., Inada, T., & Murata, S. (2021). The ubiquitination-deubiquitination cycle on the ribosomal protein eS7A is crucial for efficient translation. iScience, 24(3), 102145. https://doi.org/10.1016/j.isci.2021.102145
Tauber, D., Tauber, G., Khong, A., Van Treeck, B., Pelletier, J., & Parker, R. (2020). Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell, 180(3), 411-426.e416. https://doi.org/10.1016/j.cell.2019.12.031
Temme, C., Zhang, L., Kremmer, E., Ihling, C., Chartier, A., Sinz, A., Simonelig, M., & Wahle, E. (2010). Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA, 16(7), 1356-1370. https://doi.org/10.1261/rna.2145110
Tesina, P., Heckel, E., Cheng, J., Fromont-Racine, M., Buschauer, R., Kater, L., Beatrix, B., Berninghausen, O., Jacquier, A., Becker, T., & Beckmann, R. (2019). Structure of the 80S ribosome-Xrn1 nuclease complex. Nature Structural & Molecular Biology, 26(4), 275-280. https://doi.org/10.1038/s41594-019-0202-5
Tucker, M., Staples, R. R., Valencia-Sanchez, M. A., Muhlrad, D., & Parker, R. (2002). Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. The EMBO Journal, 21(6), 1427-1436. https://doi.org/10.1093/emboj/21.6.1427
Tucker, M., Valencia-Sanchez, M. A., Staples, R. R., Chen, J., Denis, C. L., & Parker, R. (2001). The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell, 104(3), 377-386. https://doi.org/10.1016/s0092-8674(01)00225-2
Tudek, A., Krawczyk, P. S., Mroczek, S., Tomecki, R., Turtola, M., Matylla-Kulinska, K., Jensen, T. H., & Dziembowski, A. (2021). Global view on the metabolism of RNA poly(A) tails in yeast Saccharomyces cerevisiae. Nature Communications, 12(1), 4951. https://doi.org/10.1038/s41467-021-25251-w
Van Etten, J., Schagat, T. L., Hrit, J., Weidmann, C. A., Brumbaugh, J., Coon, J. J., & Goldstrohm, A. C. (2012). Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. The Journal of Biological Chemistry, 287(43), 36370-36383. https://doi.org/10.1074/jbc.M112.373522
Vicens, Q., Kieft, J. S., & Rissland, O. S. (2018). Revisiting the closed-loop model and the nature of mRNA 5′-3′ communication. Molecular Cell, 72(5), 805-812. https://doi.org/10.1016/j.molcel.2018.10.047
Villanyi, Z., Ribaud, V., Kassem, S., Panasenko, O., Pahi, Z., Gupta, I., Steinmetz, L., Boros, I., & Collart, M. A. (2014). The Not5 subunit of the ccr4-not complex connects transcription and translation. PLoS Genetics, 10(10), e1004569. https://doi.org/10.1371/journal.pgen.1004569
Waghray, S., Williams, C., Coon, J. J., & Wickens, M. (2015). Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo. RNA, 21(7), 1335-1345. https://doi.org/10.1261/rna.051565.115
Wang, Z., Cheng, Y., Abraham, J. M., Yan, R., Liu, X., Chen, W., Ibrahim, S., Schroth, G. P., Ke, X., He, Y., & Meltzer, S. J. (2017). RNA sequencing of esophageal adenocarcinomas identifies novel fusion transcripts, including NPC1-MELK, arising from a complex chromosomal rearrangement. Cancer, 123(20), 3916-3924. https://doi.org/10.1002/cncr.30837
Webster, M. W., Chen, Y. H., Stowell, J. A. W., Alhusaini, N., Sweet, T., Graveley, B. R., Coller, J., & Passmore, L. A. (2018). mRNA deadenylation is coupled to translation rates by the differential activities of Ccr4-Not nucleases. Molecular Cell, 70(6), 1089-1100 e1088. https://doi.org/10.1016/j.molcel.2018.05.033
Wiederhold, K., & Passmore, L. A. (2010). Cytoplasmic deadenylation: Regulation of mRNA fate. Biochemical Society Transactions, 38(6), 1531-1536. https://doi.org/10.1042/BST0381531
Wiener, D., Antebi, Y., & Schwartz, S. (2021). Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis. Nature Structural & Molecular Biology, 28(12), 1038-1049. https://doi.org/10.1038/s41594-021-00694-3
Wilczynska, A., Gillen, S. L., Schmidt, T., Meijer, H. A., Jukes-Jones, R., Langlais, C., Kopra, K., Lu, W. T., Godfrey, J. D., Hawley, B. R., Hodge, K., Zanivan, S., Cain, K., Le Quesne, J., & Bushell, M. (2019). eIF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5′UTR. Genome Biology, 20(1), 262. https://doi.org/10.1186/s13059-019-1857-2
Wild, T., & Cramer, P. (2012). Biogenesis of multisubunit RNA polymerases. Trends in Biochemical Sciences, 37(3), 99-105. https://doi.org/10.1016/j.tibs.2011.12.001
Wong, S. Q., Behren, A., Mar, V. J., Woods, K., Li, J., Martin, C., Sheppard, K. E., Wolfe, R., Kelly, J., Cebon, J., Dobrovic, A., & McArthur, G. A. (2015). Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma. Oncotarget, 6(2), 1115-1127. https://doi.org/10.18632/oncotarget.2747
Workman, R. E., Tang, A. D., Tang, P. S., Jain, M., Tyson, J. R., Razaghi, R., Zuzarte, P.C., Gilpatrick, T., Payne, A., Quick, J., Sadowski, N., Holmes, N., de Jesus, J.G., Jones, K.L., Soulette, C.M., Snutch, T.P., Loman, N., Paten, B., Loose, M., … Timp, W. (2019). Nanopore native RNA sequencing of a human poly(A) transcriptome. Nature Methods, 16(12), 1297-1305. https://doi.org/10.1038/s41592-019-0617-2
Wu, E., Vashisht, A. A., Chapat, C., Flamand, M. N., Cohen, E., Sarov, M., Tabach, Y., Sonenberg, N., Wohlschlegel, & Duchaine, T. F. (2017). A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Research, 45(4), 2081-2098. https://doi.org/10.1093/nar/gkw872
Wu, Q., Medina, S. G., Kushawah, G., DeVore, M. L., Castellano, L. A., Hand, J. M., Wright, M., & Bazzini, A. A. (2019). Translation affects mRNA stability in a codon-dependent manner in human cells. eLife, 8, 1-41. https://doi.org/10.7554/eLife.45396
Wu, Z., Wang, Y., Lim, J., Liu, B., Li, Y., Vartak, R., Stankiewicz, T., Montgomery, S., & Lu, B. (2018). Ubiquitination of ABCE1 by NOT4 in response to mitochondrial damage links co-translational quality control to PINK1-directed mitophagy. Cell Metabolism, 28(1), 130-144 e137. https://doi.org/10.1016/j.cmet.2018.05.007
Xiang, K., & Bartel, D. P. (2021). The molecular basis of coupling between poly(A)-tail length and translational efficiency. eLife, 10, 1-39. https://doi.org/10.7554/eLife.66493
Yang, C., Bolotin, E., Jiang, T., Sladek, F. M., & Martinez, E. (2007). Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene, 389(1), 52-65. https://doi.org/10.1016/j.gene.2006.09.029
Young, D. J., Guydosh, N. R., Zhang, F., Hinnebusch, A. G., & Green, R. (2015). Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3′UTRs in vivo. Cell, 162(4), 872-884. https://doi.org/10.1016/j.cell.2015.07.041
Yourik, P., Aitken, C. E., Zhou, F., Gupta, N., Hinnebusch, A. G., & Lorsch, J. R. (2017). Yeast eIF4A enhances recruitment of mRNAs regardless of their structural complexity. eLife, 6, 1-27. https://doi.org/10.7554/eLife.31476
Zhang, Q., Pavanello, L., Potapov, A., Bartlam, M., & Winkler, G. S. (2022). Structure of the human Ccr4-Not nuclease module using x-ray crystallography and electron paramagnetic resonance spectroscopy distance measurements. Protein Science, 31(3), 758-764. https://doi.org/10.1002/pro.4262