Coupled information networks drive honeybee (Apis mellifera) collective foraging.

collective behaviour honeybee network-based diffusion analysis social insects social network social transmission

Journal

The Journal of animal ecology
ISSN: 1365-2656
Titre abrégé: J Anim Ecol
Pays: England
ID NLM: 0376574

Informations de publication

Date de publication:
27 Nov 2023
Historique:
received: 08 02 2023
accepted: 13 10 2023
medline: 27 11 2023
pubmed: 27 11 2023
entrez: 27 11 2023
Statut: aheadofprint

Résumé

Collective behaviour by eusocial insect colonies is typically achieved through multiple communication networks that produce complex behaviour at the group level but often appear to provide redundant or even competing information. A classic example occurs in honeybee (Apis mellifera) colonies, where both the dance communication system and robust scent-based mechanisms contribute to the allocation of a colony's workforce by regulating the flow of experienced foragers among known food sources. Here we analysed social connectivity patterns during the reactivation of experienced foragers to familiar feeding sites to show that these social information pathways are not simply multiple means to achieve the same end but intersect to play complementary roles in guiding forager behaviour. Using artificial feeding stations, we mimicked a natural scenario in which two forager groups were simultaneously collecting from distinct patches containing different flowering species. We then observed the reactivation of these groups at their familiar feeding sites after interrupting their foraging. Social network analysis revealed that temporarily unemployed individuals interacted more often and for longer with foragers that advertised a familiar versus unfamiliar foraging site. Due to such resource-based assortative mixing, network-based diffusion analysis estimated that reactivation events primarily resulted from interactions among bees that had been trained to the same feeding station and less so from different-feeder interactions. Both scent- and dance-based interactions strongly contributed to reactivation decisions. However, each bout of dance-following had an especially strong effect on a follower's likelihood of reactivation, particularly when dances indicated locations familiar to followers. Our findings illustrate how honeybee foragers can alter their social connectivity in ways that are likely to enhance collective outcomes by enabling foragers to rapidly access up-to-date information about familiar foraging sites. In addition, our results highlight how reliance on multiple communication mechanisms enables social insect workers to utilise flexible information-use strategies that are robust to variation in the availability of social information.

Identifiants

pubmed: 38009606
doi: 10.1111/1365-2656.14029
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : H2020 European Research Council
ID : 638873

Informations de copyright

© 2023 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Références

Balbuena, M. S., Molinas, J., & Farina, W. M. (2012). Honeybee recruitment to scented food sources: Correlations between in-hive social interactions and foraging decisions. Behavioral Ecology and Sociobiology, 66(3), 445-452. https://doi.org/10.1007/s00265-011-1290-3
Biesmeijer, J. C., & Seeley, T. D. (2005). The use of waggle dance information by honey bees throughout their foraging careers. Behavioral Ecology and Sociobiology, 59(1), 133-142. https://doi.org/10.1007/s00265-005-0019-6
Cholé, H., Carcaud, J., Mazeau, H., Famié, S., Arnold, G., & Sandoz, J.-C. (2019). Social contact acts as appetitive reinforcement and supports associative learning in honeybees. Current Biology, 29(8), 1407-1413.e3. https://doi.org/10.1016/j.cub.2019.03.025
Couvillon, M. J. (2012). The dance legacy of Karl von Frisch. Insectes Sociaux, 59(3), 297-306. https://doi.org/10.1007/s00040-012-0224-z
Denwood, M. J. (2016). runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of Statistical Software, 71(9), 1-25. https://doi.org/10.18637/jss.v071.i09
Dorigo, M., Theraulaz, G., & Trianni, V. (2021). Swarm robotics: Past, present, and future. Proceedings of the IEEE, 109(7), 1152-1165. https://doi.org/10.1109/JPROC.2021.3072740
Dyer, F. C. (2002). The biology of the dance language. Annual Review of Entomology, 47(1), 917-949. https://doi.org/10.1146/annurev.ento.47.091201.145306
Esch, H., & Bastian, J. A. (1970). How do newly recruited honey bees approach a food site? Zeitschrift für Vergleichende Physiologie, 68(2), 175-181. https://doi.org/10.1007/BF00297693
Farina, W. M., & Grüter, C. (2009). Trophallaxis: A mechanism of information transfer. In S. Jarau, & M. Hrncir (Eds.), Food exploitation by social insects (pp. 173-187). CRC Press.
Farina, W. M., Grüter, C., Acosta, L., & Mc Cabe, S. (2007). Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissenschaften, 94(1), 55-60. https://doi.org/10.1007/s00114-006-0157-3
Farina, W. M., Grüter, C., & Díaz, P. C. (2005). Social learning of floral odours inside the honeybee hive. Proceedings of the Royal Society B: Biological Sciences, 272(1575), 1923-1928. https://doi.org/10.1098/rspb.2005.3172
Farine, D. R. (2014). Measuring phenotypic assortment in animal social networks: Weighted associations are more robust than binary edges. Animal Behaviour, 89, 141-153. https://doi.org/10.1016/j.anbehav.2014.01.001
Fefferman, N. H. (2019). When to turn to nature-inspired solutions for cyber systems. In E.-S. M. El-Alfy, M. Eltoweissy, E. W. Fulp, & W. Mazurczyk (Eds.), Nature-inspired cyber security and resiliency: Fundamentals, techniques and applications (pp. 29-50). Institution of Engineering and Technology. https://doi.org/10.1049/PBSE010E_ch2
Franz, M., & Nunn, C. L. (2009). Network-based diffusion analysis: A new method for detecting social learning. Proceedings of the Royal Society B: Biological Sciences, 276, 1829-1836. https://doi.org/10.1098/rspb.2008.1824
Gil, M., & Farina, W. (2002). Foraging reactivation in the honeybee Apis mellifera L.: Factors affecting the return to known nectar sources. Naturwissenschaften, 89(7), 322-325. https://doi.org/10.1007/s00114-002-0323-1
Gilley, D. C., Kuzora, J. M., & Thom, C. (2012). Hydrocarbons emitted by waggle-dancing honey bees stimulate colony foraging activity by causing experienced foragers to exploit known food sources. Apidologie, 43(1), 85-94. https://doi.org/10.1007/s13592-011-0080-2
Gordon, D. M. (2010). Ant encounters: Interaction networks and colony behavior. Princeton University Press.
Gould, J. L. (1975). Honey bee recruitment: The dance-language controversy: Unambiguous experiments show that honey bees use an abstract language for communication. Science, 189(4204), 685-693. https://doi.org/10.1126/science.1154023
Grüter, C., Acosta, L. E., & Farina, W. M. (2006). Propagation of olfactory information within the honeybee hive. Behavioral Ecology and Sociobiology, 60(5), 707-715. https://doi.org/10.1007/s00265-006-0214-0
Grüter, C., Balbuena, M. S., & Farina, W. M. (2008). Informational conflicts created by the waggle dance. Proceedings of the Royal Society B: Biological Sciences, 275(1640), 1321-1327. https://doi.org/10.1098/rspb.2008.0186
Grüter, C., & Czaczkes, T. J. (2019). Communication in social insects and how it is shaped by individual experience. Animal Behaviour, 151, 207-215. https://doi.org/10.1016/j.anbehav.2019.01.027
Grüter, C., & Farina, W. M. (2009). The honeybee waggle dance: Can we follow the steps? Trends in Ecology & Evolution, 24(5), 242-247. https://doi.org/10.1016/j.tree.2008.12.007
Grüter, C., & Leadbeater, E. (2014). Insights from insects about adaptive social information use. Trends in Ecology & Evolution, 29(3), 177-184. https://doi.org/10.1016/j.tree.2014.01.004
Grüter, C., & Ratnieks, F. L. W. (2011). Honeybee foragers increase the use of waggle dance information when private information becomes unrewarding. Animal Behaviour, 81(5), 949-954. https://doi.org/10.1016/j.anbehav.2011.01.014
Grüter, C., Segers, F. H. I. D., & Ratnieks, F. L. W. (2013). Social learning strategies in honeybee foragers: Do the costs of using private information affect the use of social information? Animal Behaviour, 85(6), 1443-1449. https://doi.org/10.1016/j.anbehav.2013.03.041
Hasenjager, M. J., Franks, V. R., & Leadbeater, E. (2022). From dyads to collectives: A review of honeybee signalling. Behavioral Ecology and Sociobiology, 76(9), 124. https://doi.org/10.1007/s00265-022-03218-1
Hasenjager, M. J., Hoppitt, W., Cunningham-Eurich, I., Franks, V., & Leadbeater, E. (2022). Data from: Coupled information networks drive honeybee (Apis mellifera) collective foraging. Figshare. https://doi.org/10.6084/m9.figshare.19134734.v2
Hasenjager, M. J., Hoppitt, W., & Leadbeater, E. (2020). Network-based diffusion analysis reveals context-specific dominance of dance communication in foraging honeybees. Nature Communications, 11, 625. https://doi.org/10.1038/s41467-020-14410-0
Hasenjager, M. J., Leadbeater, E., & Hoppitt, W. (2021). Detecting and quantifying social transmission using network-based diffusion analysis. Journal of Animal Ecology, 90(1), 8-26. https://doi.org/10.1111/1365-2656.13307
Hoppitt, W. (2020). bayesNBDA [computer software]. https://github.com/whoppitt/bayesNBDA
Hoppitt, W., Boogert, N. J., & Laland, K. N. (2010). Detecting social transmission in networks. Journal of Theoretical Biology, 263, 544-555. https://doi.org/10.1016/j.jtbi.2010.01.004
Hoppitt, W., Photopoulou, T., Hasenjager, M., & Leadbeater, E. (2020). NBDA: A package for implementing network-based diffusion analysis (R package version 0.9.4) [Computer software]. https://github.com/whoppitt/NBDA
I'Anson Price, R., Dulex, N., Vial, N., Vincent, C., & Grüter, C. (2019). Honeybees forage more successfully without the “dance language” in challenging environments. Science Advances, 5(2), eaat0450. https://doi.org/10.1126/sciadv.aat0450
Johnson, B. R., & Linksvayer, T. A. (2010). Deconstructing the superorganism: Social physiology, groundplans, and sociogenomics. The Quarterly Review of Biology, 85(1), 57-79. https://doi.org/10.1086/650290
Johnson, D. L. (1967). Communication among honey bees with field experience. Animal Behaviour, 15(4), 487-492. https://doi.org/10.1016/0003-3472(67)90048-6
Kirchner, W. H., & Grasser, A. (1998). The significance of odor cues and dance language information for the food search behavior of honeybees (Hymenoptera: Apidae). Journal of Insect Behavior, 11(2), 169-178. https://doi.org/10.1023/A:1021098405564
Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd ed.). Academic Press.
Menzel, R. (2019). The waggle dance as an intended flight: A cognitive perspective. Insects, 10(12), 424. https://doi.org/10.3390/insects10120424
Mersch, D. P., Crespi, A., & Keller, L. (2013). Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science, 340(6136), 1090-1093. https://doi.org/10.1126/science.1234316
Michelsen, A., Kirchner, W. H., & Lindauer, M. (1986). Sound and vibrational signals in the dance language of the honeybee, Apis mellifera. Behavioral Ecology and Sociobiology, 18, 207-212. https://doi.org/10.1007/BF00290824
Nicolson, S. W., Nepi, M., & Pacini, E. (2007). Nectaries and nectar (1st ed.). Springer. https://doi.org/10.1007/978-1-4020-5937-7
O'Shea-Wheller, T. A., Hunt, E. R., & Sasaki, T. (2021). Functional heterogeneity in superorganisms: Emerging trends and concepts. Annals of the Entomological Society of America, 114(5), 562-574. https://doi.org/10.1093/aesa/saaa039
R Core Team. (2022). R: A language and environment for statistical computing [computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
Reinhard, J., Srinivasan, M. V., & Zhang, S. (2004). Scent-triggered navigation in honeybees. Nature, 427(6973), 411. https://doi.org/10.1038/427411a
Riley, J. R., Greggers, U., Smith, A. D., Reynolds, D. R., & Menzel, R. (2005). The flight paths of honeybees recruited by the waggle dance. Nature, 435(7039), 205-207. https://doi.org/10.1038/nature03526
Seeley, T. D. (1994). Honey bee foragers as sensory units of their colonies. Behavioral Ecology and Sociobiology, 34, 51-62. https://doi.org/10.1007/BF00175458
Seeley, T. D. (1995). The wisdom of the hive: The social physiology of honey bee colonies. Harvard University Press.
Seeley, T. D., & Towne, W. F. (1992). Tactics of dance choice in honey bees: Do foragers compare dances? Behavioral Ecology and Sociobiology, 30(1), 59-69. https://doi.org/10.1007/BF00168595
Stroeymeyt, N., Grasse, A. V., Crespi, A., Mersch, D. P., Cremer, S., & Keller, L. (2018). Social network plasticity decreases disease transmission in a eusocial insect. Science, 362(6417), 941-945. https://doi.org/10.1126/science.aat4793
Tautz, J. (2022). Communication between honeybees: More than just a dance in the dark. Springer Cham.
Tautz, J., & Sandeman, D. C. (2003). Recruitment of honeybees to non-scented food sources. Journal of Comparative Physiology A, 189(4), 293-300. https://doi.org/10.1007/s00359-003-0402-6
Thom, C., Gilley, D. C., Hooper, J., & Esch, H. E. (2007). The scent of the waggle dance. PLoS Biology, 5(9), e228. https://doi.org/10.1371/journal.pbio.0050228
Villar, M. E., Marchal, P., Viola, H., & Giurfa, M. (2020). Redefining single-trial memories in the honeybee. Cell Reports, 30(8), 2603-2613.e3. https://doi.org/10.1016/j.celrep.2020.01.086
von Frisch, K. (1967). The dance language and orientation of bees. Harvard University Press.
Wenner, A. M., & Wells, P. H. (1990). Anatomy of a controversy: The question of a “language” among bees. Columbia University Press.
Wenner, A. M., Wells, P. H., & Johnson, D. L. (1969). Honey bee recruitment to food sources: Olfaction or language? Science, 164(3875), 84-86. https://doi.org/10.1126/science.164.3875.84
Whalen, A., & Hoppitt, W. J. E. (2016). Bayesian model selection with network based diffusion analysis. Frontiers in Psychology, 7, 409. https://doi.org/10.3389/fpsyg.2016.00409
Wray, M. K., Klein, B. A., & Seeley, T. D. (2012). Honey bees use social information in waggle dances more fully when foraging errors are more costly. Behavioral Ecology, 23(1), 125-131. https://doi.org/10.1093/beheco/arr165

Auteurs

Matthew J Hasenjager (MJ)

Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA.
National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, USA.
Department of Biological Sciences, Royal Holloway, University of London, Egham, UK.

William Hoppitt (W)

Department of Biological Sciences, Royal Holloway, University of London, Egham, UK.

Iona Cunningham-Eurich (I)

Department of Biological Sciences, Royal Holloway, University of London, Egham, UK.
Natural History Museum, London, UK.
Department of Genetics, Evolution, and Environment, University College London, London, UK.

Victoria R Franks (VR)

Department of Biological Sciences, Royal Holloway, University of London, Egham, UK.
Department of Biological Sciences, University of Chester, Chester, UK.

Ellouise Leadbeater (E)

Department of Biological Sciences, Royal Holloway, University of London, Egham, UK.

Classifications MeSH