A comparative analysis of the influence of refractive error on image acuity using three eye models.
optical eye models
pupil size
refractive errors
Journal
Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians (Optometrists)
ISSN: 1475-1313
Titre abrégé: Ophthalmic Physiol Opt
Pays: England
ID NLM: 8208839
Informations de publication
Date de publication:
Jan 2024
Jan 2024
Historique:
revised:
31
10
2023
received:
07
07
2023
accepted:
31
10
2023
pubmed:
27
11
2023
medline:
27
11
2023
entrez:
27
11
2023
Statut:
ppublish
Résumé
To analyse and compare image acuity for different refractive errors generated by either altering axial length or corneal curvature and using three human eye models with two pupil sizes. Three different eye models, Liou-Brennan, Goncharov and Navarro, were used. Simulations were made (using Ansys Zemax OpticStudio 22.3) for real pupil sizes of 3 and 6 mm with refractive errors ranging from -2 to +2 D in 0.25 D increments. Refractive errors were simulated by varying axial length or corneal curvature. Root mean square (RMS) values were used to determine image acuity. For the 3-mm pupil, all models gave similar results, with the Navarro model having slightly higher RMS values for the emmetropic eye. For the 6-mm pupil, the Liou-Brennan and Goncharov eye models gave similar results, with RMS values lower than for the Navarro eye model. The highest RMS value was visible in the axial length-induced refractive errors. Refractive errors generated by altering corneal curvature give smaller RMS values than those generated by altering axial length. The axial length and corneal radius simulations indicate a wide spread of results for myopic, hyperopic and emmetropic eyes. There are multiple outcomes that give the same refractive error, even within a single-eye model. The axial length/corneal curvature ratio showed a higher ratio for myopes than hyperopes for every model. The influence of refractive error on image acuity varied depending on the simulation method of refractive error and the model used. The origins of refractive error and the influence it has on image acuity need further investigation. As models become more sophisticated, personalised and biologically relevant, they will better represent the image acuity of the eye for varying refractive errors, ethnicities, ages and pupil sizes.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
182-190Subventions
Organisme : European Union's Horizon 2020
ID : 956720
Informations de copyright
© 2023 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.
Références
Navarro R. The optical design of the human eye: a critical review. J Optom. 2009;2:3-18.
Zoulinakis G, Esteve-Taboada JJ, Ferrer-Blasco T, Madrid-Costa D, Montés-Micó R. Accommodation in human eye models: a comparison between the optical designs of Navarro, Arizona and Liou-Brennan. Int J Ophthalmol. 2017;10:43-50.
Atchison DA, Smith G. Continuous gradient index and shell models of the human lens. Vision Res. 1995;35:2529-2538.
Emsley HH. Visual optics. Vol 1. 5th ed. London: Butterworths; 1953. p. 343-348.
Le Grand Y. Physiological optics. Berlin, New York: Springer-Verlag; 1980. p. 57-69.
Bakaraju RC, Ehrmann K, Papas E, Ho A. Finite schematic eye models and their accuracy to in-vivo data. Vision Res. 2008;48:1681-1694.
Atchison DA, Thibos LN. Optical models of the human eye. Clin Exp Optom. 2016;99:99-106.
Navarro R, González L, Hernández-Matamoros JL. On the prediction of optical aberrations by personalized eye models. Optom Vis Sci. 2006;83:371-381.
Goncharov AV, Dainty C. Wide-field schematic eye models with gradient-index lens. J Opt Soc Am A. 2007;24:2157-2174.
Atchison DA. Optical models for human myopic eyes. Vision Res. 2006;46:2236-2250.
Artal P, Benito A, Tabernero J. The human eye is an example of robust optical design. J Vis. 2006;6. https://doi.org/10.1167/6.1.1
Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, Ohno-Matsui K, et al. IMI-defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci. 2019;60:M20-M30.
Liou H-L, Brennan NA. Anatomically accurate, finite model eye for optical modeling. J Opt Soc Am A. 1997;14:1684-1695.
Navarro R. Adaptive model of the aging emmetropic eye and its changes with accommodation. J Vis. 2014;14:21. https://doi.org/10.1167/14.13.21
Navarro R, Palos F, González L. Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses. J Opt Soc Am A. 2007;24:2175-2185.
Navarro R, Palos F, González LM. Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens. J Opt Soc Am A. 2007;24:2911-2920.
Spector RH. The Pupils. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. Boston: Butterworths; 1990.
Kobashi H, Kamiya K, Ishikawa H, Goseki T, Shimizu K. Daytime variations in pupil size under photopic conditions. Optom Vis Sci. 2012;89:197-202.
Yang Y, Thompson K, Burns SA. Pupil location under mesopic, photopic, and pharmacologically dilated conditions. Invest Ophthalmol Vis Sci. 2002;43:2508-2512.
Meister D, Sheedy JE. Introduction to ophthalmic optics. San Diego, CA: Carl Zeiss Vision; 2008.
Rakich A. The 100th birthday of the conic constant and Schwarzschild's revolutionary papers in optics. In: Sasian JM, Koshel RJ, Juergens RC, editors. Novel optical systems design and optimization VIII. San Diego, CA: SPIE; 2005. p. 587501.
Li S-M, Wang N, Zhou Y, Li S-Y, Kang M-T, Liu L-R, et al. Paraxial schematic eye models for 7- and 14-year-old Chinese children. Invest Ophthalmol Vis Sci. 2015;56:3577-3583.
Rozema JJ, Rodriguez P, Navarro R, Tassignon M-J. SyntEyes: a higher-order statistical eye model for healthy eyes. Invest Ophthalmol Vis Sci. 2016;57:683-691.
Scott R, Grosvenor T. Structural model for emmetropic and myopic eyes. Ophthalmic Physiol Opt. 1993;13:41-47.
Olsen T, Arnarsson A, Sasaki H, Sasaki K, Jonasson F. On the ocular refractive components: the Reykjavik eye study. Acta Ophthalmol Scand. 2007;85:361-366.
Garner LF, Stewart AW, Kinnear RF, Frith MJ. The Nepal longitudinal study: predicting myopia from the rate of increase in vitreous chamber depth. Optom Vis Sci. 2004;81:44-48.
Strang NC, Schmid KL, Carney LG. Hyperopia is predominantly axial in nature. Curr Eye Res. 1998;17:380-383.
Park SH, Park KH, Kim JM, Choi CY. Relation between axial length and ocular parameters. Ophthalmologica. 2010;224:188-193.
Hashemi H, Khabazkhoob M, Emamian MH, Shariati M, Miraftab M, Yekta A, et al. Association between refractive errors and ocular biometry in Iranian adults. J Ophthalmic Vis Res. 2015;10:214-220.
Thanusree P, Mallika V, Unnikrishnan S. Ocular biometric parameters of children with refractive errors in the age group of 6-15 years. Kerala J Ophthalmol. 2021;33:160-166.
Gaurisankar ZS, van Rijn GA, Lima JEE, Ilgenfritz AP, Cheng Y, Haasnoot GW, et al. Correlations between ocular biometrics and refractive error: a systematic review and meta-analysis. Acta Ophthalmol. 2019;97:735-743.
Grosvenor T, Goss DA. Role of the cornea in emmetropia and myopia. Optom Vis Sci. 1998;75:132-145.
Sharmin N, Vohnsen B. Monocular accommodation response to random defocus changes induced by a tuneable lens. Vision Res. 2019;165:45-53.
McKelvie J, McArdle B, McGhee C. The influence of tilt, decentration, and pupil size on the higher-order aberration profile of aspheric intraocular lenses. Ophthalmology. 2011;118:1724-1731.
Campbell FW, Gregory AH. Effect of size of pupil on visual acuity. Nature. 1960;187:1121-1123.
Pan C-W, Wong T-Y, Chang L, Lin X-Y, Lavanya R, Zheng Y-F, et al. Ocular biometry in an urban Indian population: the Singapore Indian Eye Study (SINDI). Invest Ophthalmol Vis Sci. 2011;52:6636-6642.
Iyamu E, Iyamu J, Obiakor CI. The role of axial length-corneal radius of curvature ratio in refractive state categorization in a Nigerian population. ISRN Ophthalmol. 2011;2011:138941. https://doi.org/10.5402/2011/138941
Grosvenor T, Scott R. Role of the axial length/corneal radius ratio in determining the refractive state of the eye. Optom Vis Sci. 1994;71:573-579.
Hashemi H, Khabazkhoob M, Miraftab M, Emamian MH, Shariati M, Abdolahi-Nia T, et al. Axial length to corneal radius of curvature ratio and refractive errors. J Ophthalmic Vis Res. 2013;8:220-226.
Meng W, Butterworth J, Malecaze F, Calvas P. Axial length of myopia: a review of current research. Ophthalmologica. 2010;225:127-134.
Twelker JD, Mitchell GL, Messer DH, Bhakta R, Jones LA, Mutti DO, et al. Children's ocular components and age, gender, and ethnicity. Optom Vis Sci. 2009;86:918-935.
Chen H, Lin H, Lin Z, Chen J, Chen W. Distribution of axial length, anterior chamber depth, and corneal curvature in an aged population in South China. BMC Ophthalmol. 2016;16:47. https://doi.org/10.1186/s12886-016-0221-5
Ip JM, Huynh SC, Robaei D, Kifley A, Rose KA, Morgan IG, et al. Ethnic differences in refraction and ocular biometry in a population-based sample of 11-15-year-old Australian children. Eye. 2008;22:649-656.
Wang D, Amoozgar B, Porco T, Wang Z, Lin SC. Ethnic differences in lens parameters measured by ocular biometry in a cataract surgery population. PLoS One. 2017;12:e0179836. https://doi.org/10.1371/journal.pone.0179836
Sheil CJ, Goncharov AV. Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens. Biomed Opt Express. 2016;7:1985-1999.
He X, Sankaridurg P, Naduvilath T, Wang J, Xiong S, Weng R, et al. Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4-18 years. Br J Ophthalmol. 2023;107:167-175.
Mu J, Zeng D, Fan J, Liu M, Zhong H, Shuai X, et al. The accuracy of the axial length and axial length/corneal radius ratio for myopia assessment among Chinese children. Front Pediatr. 2022;10:859944. https://doi.org/10.3389/fped.2022.859944