Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies.

Anti-inflammation Antioxidant Central nervous system Molecular mechanisms Nanoformulations Neurological disorders Thymoquinone

Journal

Naunyn-Schmiedeberg's archives of pharmacology
ISSN: 1432-1912
Titre abrégé: Naunyn Schmiedebergs Arch Pharmacol
Pays: Germany
ID NLM: 0326264

Informations de publication

Date de publication:
27 Nov 2023
Historique:
received: 12 12 2022
accepted: 30 10 2023
medline: 27 11 2023
pubmed: 27 11 2023
entrez: 27 11 2023
Statut: aheadofprint

Résumé

Thymoquinone (THQ) and its nanoformulation (NFs) have emerged as promising candidates for the treatment of neurological diseases due to their diverse pharmacological properties, which include anti-inflammatory, antioxidant, and neuroprotective effects. In this study, we conducted an extensive search across reputable scientific websites such as PubMed, ScienceDirect, Scopus, and Google Scholar to gather relevant information. The antioxidant and anti-inflammatory properties of THQ have been observed to enhance the survival of neurons in affected areas of the brain, leading to significant improvements in behavioral and motor dysfunctions. Moreover, THQ and its NFs have demonstrated the capacity to restore antioxidant enzymes and mitigate oxidative stress. The primary mechanism underlying THQ's antioxidant effects involves the regulation of the Nrf2/HO-1 signaling pathway. Furthermore, THQ has been found to modulate key components of inflammatory signaling pathways, including toll-like receptors (TLRs), nuclear factor-κB (NF-κB), interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα), thereby exerting anti-inflammatory effects. This comprehensive review explores the various beneficial effects of THQ and its NFs on neurological disorders and provides insights into the underlying mechanisms involved.

Identifiants

pubmed: 38010395
doi: 10.1007/s00210-023-02832-8
pii: 10.1007/s00210-023-02832-8
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abdel-Zaher AO, Farghaly HSM, Farrag MMY, Abdel-Rahman MS, Abdel-Wahab BA (2017) A potential mechanism for the ameliorative effect of thymoquinone on pentylenetetrazole-induced kindling and cognitive impairments in mice. Biomed Pharmacother 88:553–561
pubmed: 28131095 doi: 10.1016/j.biopha.2017.01.009
AbdollahzadeFard A, Saboory E, Tahmazi Y, Rasmi Y, Dindarian S, Parsamanesh N (2021) Effect of orally-administrated thymoquinone during pregnancy on litter size, pentylenetetrazol-induced seizure, and body weight in rat offspring. Iran J Basic Med Sci 24(1):30–37
Abukhader M (2012) The effect of route of administration in thymoquinone toxicity in male and female rats. Indian J Pharm Sci 74(3):195
pubmed: 23440704 pmcid: 3574528 doi: 10.4103/0250-474X.106060
Abulfadl Y, El-Maraghy N, Ahmed AE, Nofal S, Abdel-Mottaleb Y, Badary O (2018) Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Human Exp Toxicol 37(10):1092–104
doi: 10.1177/0960327118755256
Agbaria R, Gabarin A, Dahan A, Ben-Shabat S (2015) Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed. Drug Des Dev Ther 9:3119–3124
Aguiar CCT, Almeida AB, Araújo PVP, Abreu RNDCD, Chaves EMC, Vale OCD, Macêdo DS et al (2012) Oxidative stress and epilepsy: literature review. Oxidative Med Cell Longevity 2012(1):12. https://doi.org/10.1155/2012/795259
doi: 10.1155/2012/795259
Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA et al (2013) A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pacific J Tropic Biomed 3(5):337–52
doi: 10.1016/S2221-1691(13)60075-1
Ahmad N, Ahmad R, Alam MA, Samim M, Iqbal Z, Ahmad FJ (2016) Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int J Biol Macromol 88:320–332
pubmed: 26976069 doi: 10.1016/j.ijbiomac.2016.03.019
Ahmad N, Ahmad R, Al Qatifi S, Alessa M, Al Hajji H, Sarafroz M (2020) A bioanalytical UHPLC based method used for the quantification of thymoquinone-loaded-PLGA-nanoparticles in the treatment of epilepsy. BMC Chem 14:1–15. https://doi.org/10.1186/s13065-020-0664-x
doi: 10.1186/s13065-020-0664-x
Akgül B, Aycan İ, Hidişoğlu E, Afşar E, Yıldırım S, Tanrıöver G, Coşkunfırat N et al (2021) Alleviation of prilocaine-induced epileptiform activity and cardiotoxicity by thymoquinone. Daru 29(1):85–99. https://doi.org/10.1007/s40199-020-00385-2
doi: 10.1007/s40199-020-00385-2 pubmed: 33469802 pmcid: 8149770
Alam S, Khan ZI, Mustafa G, Kumar M, Islam F, Bhatnagar A, Ahmad FJ (2012) Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomed 7:5705–5718
doi: 10.2147/IJN.S35329
Alam M, Najmi AK, Ahmad I, Ahmad FJ, Akhtar MJ, Imam SS, Akhtar M (2018) Formulation and evaluation of nano lipid formulation containing CNS acting drug: molecular docking, in-vitro assessment and bioactivity detail in rats. Artif Cells, Nanomed Biotechnol 46(sup2):46–57. https://doi.org/10.1080/21691401.2018.1451873
doi: 10.1080/21691401.2018.1451873 pubmed: 29560744
Alam M, Zameer S, Najmi AK, Ahmad FJ, Imam SS, MJDr Akhtar, (2020) Thymoquinone loaded solid lipid nanoparticles demonstrated antidepressant-like activity in rats via indoleamine 2, 3-dioxygenase pathway. Drug Res 70(05):206–13. https://doi.org/10.1055/a-1131-7793
doi: 10.1055/a-1131-7793
Alamouti MA, M Bakhtiyari, F Moradi, T Mokhtari A Hedayatpour, F Zafari, M Barbarestani (2015) Remyelination of the corpus callosum by olfactory ensheathing cell in an experimental model of multiple sclerosis. Acta Med Iran 53(9):533–539
Alhamdan AAJAJOMS (2013) Neuroprotective effect of thymoquinone on repeated immobilization stress-induced oxidative stress in rats. Asian J Med Sci 5(4):83–91. https://doi.org/10.19026/ajms.5.5489
doi: 10.19026/ajms.5.5489
Alhebshi A, Gotoh M, Suzuki I (2013) Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity. Biochem Biophys Res Commun 433(4):362–67. https://doi.org/10.1016/j.bbrc.2012.11.139
doi: 10.1016/j.bbrc.2012.11.139 pubmed: 23537659
Alhebshi AH, Odawara A, Gotoh M, Suzuki I (2014) Thymoquinone protects cultured hippocampal and human induced pluripotent stem cells-derived neurons against α-synuclein-induced synapse damage. Neurosci Lett 570:126–131
pubmed: 24080376 doi: 10.1016/j.neulet.2013.09.049
Ali B, Blunden G (2003) Pharmacological and toxicological properties of Nigella sativa. Phytother Res 17(4):299–305. https://doi.org/10.1002/ptr.1309
doi: 10.1002/ptr.1309 pubmed: 12722128
Alizamir T, Akbari M, Mokhtari T, Hassanzadeh G (2017) Associated functional motor recovery induced by Intracerebroventricular (ICV) microinjection of Wharton’s jelly mesenchymal stem cells following brain ischemia/reperfusion injury in rat: decreased dark neurons and Bax gene expression in the cerebral corte. J Contemp Med Sci 3(12):319–325. https://doi.org/10.22317/jcms.12201706
doi: 10.22317/jcms.12201706
Amin N, Du X, Chen S, Ren Q, Hussien AB, Botchway BOA, Hu Z et al (2021) Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathway. Expert Opin Ther Targets 25(7):597–612
pubmed: 34236288 doi: 10.1080/14728222.2021.1952986
Amin N, Chen S, Ye S, Wu F, Hussien AB, Lou C, Hu Z et al (2022) Thymoquinone has a synergistic effect with PHD inhibitors to ameliorate ischemic brain damage in mice. Phytomed 104:154298. https://doi.org/10.1016/j.phymed.2022.154298
doi: 10.1016/j.phymed.2022.154298
Amini-Khoei H, Saghaei E, Mobini G-R, Sabzevary-Ghahfarokhi M, Ahmadi R, Bagheri N, Mokhtari T (2019) Possible involvement of PI3K/AKT/mTOR signaling pathway in the protective effect of selegiline (deprenyl) against memory impairment following ischemia reperfusion in rat. Neuropeptides 77:101942. https://doi.org/10.1016/j.npep.2019.101942
doi: 10.1016/j.npep.2019.101942 pubmed: 31272684
Aquib M, Najmi AK, Akhtar M (2015) Antidepressant effect of thymoquinone in animal models of depression. Drug Res (Stuttg) 65(9):490–494. https://doi.org/10.1055/s-0034-1389920
Arab L, Fanni A, Nemati S, Arefian E, Ai J, Mokhtari T, Farahmandfar M et al (2020) Human embryonic derived neural progenitor cells improves neurological scores following brain ischemia/reperfusion: modulation of blood and brain tissue MicroRNA-210. J Contemp Med Sci 6(3):103–108. https://doi.org/10.22317/jcms.v6i3.781
Ardah MT, Merghani MM, Haque ME (2019) Thymoquinone prevents neurodegeneration against MPTP in vivo and modulates α-synuclein aggregation in vitro. Neurochem Int 128:115–126
pubmed: 31028778 doi: 10.1016/j.neuint.2019.04.014
Aronica E, Crino PB (2011) Inflammation in epilepsy: clinical observations. Epilepsia 52:26–32
pubmed: 21542843 doi: 10.1111/j.1528-1167.2011.03033.x
Ashaari Z, Hassanzadeh G, Alizamir T, Yousefi B, Keshavarzi Z, Mokhtari T (2018) The flavone luteolin improves central nervous system disorders by different mechanisms: a review. J Molecular Neurosci 65(4):491–506
doi: 10.1007/s12031-018-1094-2
Ashfaq S, Khan NT, Ali GMJBJOS, Research T (2021) Nigella Sativa (Kalonji), Its Essential Oils and Their Therapeutic Potential. Biomed J Sci Tech Res 33(1):25448–54. https://doi.org/10.26717/BJSTR.2021.33.005335
doi: 10.26717/BJSTR.2021.33.005335
Bagheri A, Talei S, Hassanzadeh N, Mokhtari T, Akbari M, Malek F, Jameie SB et al (2017) The neuroprotective effects of flaxseed oil supplementation on functional motor recovery in a model of ischemic brain stroke: upregulation of BDNF and GDNF. Acta Med Iran 55(12):785–792
Baluchnejadmojarad T, Roghani M (2013) Coenzyme q10 ameliorates neurodegeneration, mossy fiber sprouting, and oxidative stress in intrahippocampal kainate model of temporal lobe epilepsy in rat. J Mol Neurosci 49(1):194–201. https://doi.org/10.1007/s12031-012-9886-2
doi: 10.1007/s12031-012-9886-2 pubmed: 23008120
Banerjee S, Padhye S, Azmi A, Wang Z, Philip PA, Kucuk O, Sarkar FH et al (2010) Review on molecular and therapeutic potential of thymoquinone in cancer. Nutrition Cancer 62(7):938–46. https://doi.org/10.1080/01635581.2010.509832
doi: 10.1080/01635581.2010.509832 pubmed: 20924969
Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M (2017) The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 96:173–184
pubmed: 28432986 doi: 10.1016/j.cyto.2017.04.015
Barron JC, Hurley EP, Parsons MP (2021) Huntingtin and the synapse. Front Cell Neurosci 15:689332. https://doi.org/10.3389/fncel.2021.689332
doi: 10.3389/fncel.2021.689332 pubmed: 34211373 pmcid: 8239291
Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M et al (2015) Huntington disease. Nat Rev Dis Primers 1:15005
Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64(1):43–51
pubmed: 11292519 doi: 10.1016/S0165-0327(00)00199-3
Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. The FEBS J 279(7):1156–66
pubmed: 22251459 doi: 10.1111/j.1742-4658.2012.08491.x
Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91. https://doi.org/10.3389/fnana.2015.00091
doi: 10.3389/fnana.2015.00091 pubmed: 26217195 pmcid: 4495335
Boscia F, Elkjaer ML, Illes Z, Kukley M (2021) Altered expression of ion channels in white matter lesions of progressive multiple sclerosis: what do we know about their function? Front Cell Neurosci 15:685703
pubmed: 34276310 pmcid: 8282214 doi: 10.3389/fncel.2021.685703
Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2(3):484–94
pubmed: 16389312 pmcid: 1144492 doi: 10.1602/neurorx.2.3.484
Butnariu M, Quispe C, Herrera-Bravo J, Helon P, Kukula-Koch W, López V, Les F et al (2022) The effects of thymoquinone on pancreatic cancer: evidence from preclinical studies. Biomed Pharmacother 153:113364
pubmed: 35810693 doi: 10.1016/j.biopha.2022.113364
Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimer’s Dementia Neuropsych 12(6):719–32
doi: 10.1016/j.jalz.2016.02.010
Chamorro Á, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. The Lancet Neurol 15(8):869–81
pubmed: 27180033 doi: 10.1016/S1474-4422(16)00114-9
Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxidants Redox Signaling 14(8):1505–17
pubmed: 20812869 pmcid: 3061196 doi: 10.1089/ars.2010.3576
Chia SJ, Tan EK, Chao YX (2020) Historical perspective: models of Parkinson's disease. Int J Mol Sci 21(7):2464. https://doi.org/10.3390/ijms21072464
Cho H, Choi JY, Hwang MS, Lee JH, Kim YJ, Lee HM, Lyoo CH et al (2016) Tau PET in Alzheimer disease and mild cognitive impairment. J Neurol 87(4):375–83
Choi S-M, Kim BC, Cho Y-H, Choi K-H, Chang J, Park M-S, Kim M-K et al (2014) Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med J 50(2):45–51
pubmed: 25229015 pmcid: 4161760 doi: 10.4068/cmj.2014.50.2.45
Cowan CM, Raymond LA (2006) Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 75:25–71. https://doi.org/10.1016/S0070-2153(06)75002-5
Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH (2018) Mechanism of intranasal drug delivery directly to the brain. Life Sci 195:44–52
pubmed: 29277310 doi: 10.1016/j.lfs.2017.12.025
da Silva Dias IC, Carabelli B, Ishii DK, de Morais H, de Carvalho MC, Rizzo LE, Souza de Zanata SM et al (2016) Indoleamine-2,3-dioxygenase/kynurenine pathway as a potential pharmacological target to treat depression associated with diabetes. Mol Neurobiol 53(10):6997–7009. https://doi.org/10.1007/s12035-015-9617-0
doi: 10.1007/s12035-015-9617-0 pubmed: 26671617
Dariani S, Baluchnejadmojarad T, Roghani M (2013) Thymoquinone attenuates astrogliosis, neurodegeneration, mossy fiber sprouting, and oxidative stress in a model of temporal lobe epilepsy. J Molecular Neurosci 51(3):679–86. https://doi.org/10.1007/s12031-013-0043-3
doi: 10.1007/s12031-013-0043-3
de Oliveira Furlam T, Roque IG, Machado EW, da Silva PP, Vianna PA Costa, Valadão C Guatimosim, Teixeira AL et al (2022) Inflammasome activation and assembly in Huntington’s disease. Mol Immun 151:134–42
doi: 10.1016/j.molimm.2022.09.002
Dimitrov LG, Turner B (2014) What’s new in multiple sclerosis? The British J Gen Pract The J Royal College Gen Pract 64(629):612–13. https://doi.org/10.3399/bjgp14X682609
doi: 10.3399/bjgp14X682609
Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–97
pubmed: 10441299 doi: 10.1016/S0166-2236(99)01401-0
Dong J, Zhang X, Wang S, Xu C, Gao M, Liu S, Li X et al (2021) Thymoquinone prevents dopaminergic neurodegeneration by attenuating oxidative stress via the Nrf2/ARE pathway. Front Pharmacol 11:615598
pubmed: 33519481 pmcid: 7840486 doi: 10.3389/fphar.2020.615598
Dur A, Köse H, Koçyiğit A, Kocaman O, Ismayilova M, Sonmez FC (2016) The anti-inflammatory and antioxidant effects of thymoquinone on ceruleine-induced acute pancreatitis in rats. Bratisl Lek Listy 117(10):614–18
pubmed: 27826979
Ebrahimi SS, Oryan S, Izadpanah E, Hassanzadeh K (2017) Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol Lett 276:108–114
pubmed: 28526446 doi: 10.1016/j.toxlet.2017.05.018
El–Dakhakhny M (1963) Studies on the chemical constitution of egyptian nigella sativa l. Seeds. Ii1) the essential oil. Planta medica. 11(04):465–70
doi: 10.1055/s-0028-1100266
Elibol B, Terzioglu-Usak S, Beker M, Sahbaz C (2019) Thymoquinone (TQ) demonstrates its neuroprotective effect via an anti-inflammatory action on the A β (1–42)-infused rat model of Alzheimer’s disease. Psych Clin Psychopharmacol 29(4):379–86. https://doi.org/10.1080/24750573.2019.1673945
doi: 10.1080/24750573.2019.1673945
Elibol B, Beker M, Terzioglu-Usak S, Dalli T, Kilic U (2020) Thymoquinone administration ameliorates Alzheimer’s disease-like phenotype by promoting cell survival in the hippocampus of amyloid beta1–42 infused rat model. Phytomedicine 79:153324
pubmed: 32920292 doi: 10.1016/j.phymed.2020.153324
Engelhardt E, Grinberg LT (2015) Alzheimer and vascular brain disease: Senile dementia. Dementia Neuropsychol 9(2):184–88
doi: 10.1590/1980-57642015DN92000013
Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197
pubmed: 26233704 pmcid: 4534574 doi: 10.1016/j.redox.2015.07.008
Esposito L, Raber J, Kekonius L, Yan F, Yu GQ, Bien-Ly N, Puoliväli J et al (2006) Reduction in mitochondrial superoxide dismutase modulates Alzheimer’s disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J Neurosci 26(19):5167–79
pubmed: 16687508 pmcid: 6674260 doi: 10.1523/JNEUROSCI.0482-06.2006
Fahmy HM, Fathy MM, Abd-elbadia RA, Elshemey WM (2019) Targeting of Thymoquinone-loaded mesoporous silica nanoparticles to different brain areas: in vivo study. Life Sci 222:94–102
pubmed: 30826496 doi: 10.1016/j.lfs.2019.02.058
Fahmy HM, Khadrawy YA, Abd-El Daim TM, Elfeky AS, AbdRabo AA, Mustafa AB, Mostafa IT (2020) Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model. Physiol Behav 222:112934
pubmed: 32353367 doi: 10.1016/j.physbeh.2020.112934
Fan C, Tian F, Zhao X, Sun Y, Yang X, Han H, Pu X (2020) The effect of thymoquinone on the characteristics of the brain extracellular space in transient middle cerebral artery occlusion rats. Biol Pharm Bull 43(9):1306–14
pubmed: 32879204 doi: 10.1248/bpb.b19-00991
Fattah LIA, Zickri MB, Aal LA, Heikal O, Osama E (2016) The effect of thymoquinone, α7 receptor agonist and α7 receptor allosteric modulator on the cerebral cortex in experimentally induced Alzheimer’s disease in relation to MSCs activation. Int J Stem Cells 9(2):230
doi: 10.15283/ijsc16021
Firdaus F, Zafeer MF, Ahmad M, Afzal M (2018) Anxiolytic and anti-inflammatory role of thymoquinone in arsenic-induced hippocampal toxicity in Wistar rats. Heliyon 4(6):e00650
pubmed: 29984327 pmcid: 6024171 doi: 10.1016/j.heliyon.2018.e00650
Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222(3):236–245
pubmed: 10601882 doi: 10.1046/j.1525-1373.1999.d01-140.x
Gandhi J, Antonelli AC, Afridi A, Vatsia S, Joshi G, Romanov V, Murray IVJ et al (2019) Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev Neurosci 30(4):339–58
pubmed: 30742586 doi: 10.1515/revneuro-2016-0035
Gilhotra N, Dhingra D (2011) Thymoquinone produced antianxiety-like effects in mice through modulation of GABA and NO levels. Pharmacol Rep 63(3):660–9
pubmed: 21857076 doi: 10.1016/S1734-1140(11)70577-1
Gilhus NE, Deuschl G (2019) Neuroinflammation—a common thread in neurological disorders. Nat Rev Neurol 15(8):429–30
pubmed: 31263256 doi: 10.1038/s41582-019-0227-8
Gökce EC, Kahveci R, Gökce A, Cemil B, Aksoy N, Sargon MF, Kısa Ü et al (2016) Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis. J Neurosurg Spine 24(6):949–59
pubmed: 26871652 doi: 10.3171/2015.10.SPINE15612
Göppert TM, Müller RHJJODT (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13(3):179–87
pubmed: 16036306 doi: 10.1080/10611860500071292
Guedes-Dias P, Pinho BR, Soares TR, de Proença J, Duchen MR, Oliveira JM (2016) Mitochondrial dynamics and quality control in Huntington’s disease. Neurobiol Dis 90:51–57. https://doi.org/10.1016/j.nbd.2015.09.008
Habtemariam SJOM, Longevity C (2019) Antioxidant and anti-inflammatory mechanisms of neuroprotection by ursolic acid: addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression. Oxidative Med Cell Longevity 2019(1):18. https://doi.org/10.1155/2019/8512048
doi: 10.1155/2019/8512048
Hajipour S, Farbood Y, Dianat M, Rashno M, Khorsandi LS, Sarkaki A (2021) Thymoquinone improves behavioral and biochemical deficits in hepatic encephalopathy induced by thioacetamide in rats. Neurosci Lett 745:135617
pubmed: 33421492 doi: 10.1016/j.neulet.2020.135617
Hamdan AM, Al-Gayyar MM, Shams MEE, Alshaman US, Prabahar K, Bagalagel A, Diri R et al (2019) Thymoquinone therapy remediates elevated brain tissue inflammatory mediators induced by chronic administration of food preservatives. Sci Rep 9(1):7026
pubmed: 31065039 pmcid: 6505027 doi: 10.1038/s41598-019-43568-x
Hemmati-Dinarvand M, Valilo M, Kalantary-Charvadeh A, Sani MA, Kargar R, Safari H, Samadi N (2019) Oxidative stress and Parkinson’s disease: conflict of oxidant-antioxidant systems. Neurosci Lett 709:134296
pubmed: 31153970 doi: 10.1016/j.neulet.2019.134296
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH et al (2015) Neuroinflammation in Alzheimer’s disease. The Lancet Neurol 14(4):388–405
pubmed: 25792098 doi: 10.1016/S1474-4422(15)70016-5
Hosseinzadeh H, Parvardeh S (2004) Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomed 11(1):56–64
doi: 10.1078/0944-7113-00376
Hussien NI, Elawady MA, Elmaghrabi MM, Muhammad MH (2020) Impact of thymoquinone on memory deficit-associated with global cerebral ischemia-reperfusion injury in rats; Possible Role of PPAR-γ. Am J Biomed Sci 12(1):77–90. https://doi.org/10.5099/aj200100077
HyderPottoo F, Salahuddin M, Khan FA, Albaqshi BT, Gomaa MS, Abdulla FS, AlHajri N et al (2022) Trio-drug combination of sodium valproate, baclofen and thymoquinone exhibits synergistic anticonvulsant effects in rats and neuro-protective effects in HEK-293 cells. Curr Issues Mol Biol 44(10):4350–66
doi: 10.3390/cimb44100299
Ismail N, Ismail M, Azmi NH, Bakar MFA, Yida Z, Abdullah MA, Basri H (2017) Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomed Pharmacother 95:780–788
pubmed: 28892789 doi: 10.1016/j.biopha.2017.08.074
Iwata M, Inoue T, Asai Y, Hori K, Fujiwara M, Matsuo S, Tsuchida W et al (2020) The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. Biochem Biophysics Reports 23:100790
doi: 10.1016/j.bbrep.2020.100790
Jakaria M, Cho D-Y, Haque E, Karthivashan G, Kim I-S, Ganesan P, Choi D-K (2018) Neuropharmacological potential and delivery prospects of thymoquinone for neurological disorders. Oxidative Med Cell Longevity 2018(1):17. https://doi.org/10.1155/2018/1209801
doi: 10.1155/2018/1209801
Jiang X, Xu L, Tang L, Liu F, Chen Z, Zhang J, Chen L et al (2018) Role of the indoleamine-2,3-dioxygenase/kynurenine pathway of tryptophan metabolism in behavioral alterations in a hepatic encephalopathy rat model. J Neuroinflammation 15(1):3–3
pubmed: 29301550 pmcid: 5753541 doi: 10.1186/s12974-017-1037-9
Johnson NJ, Hanson LR, Frey WH (2010) Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm 7(3):884–93
pubmed: 20420446 pmcid: 2892271 doi: 10.1021/mp100029t
Jokeit H, Schacher M (2004) Neuropsychological aspects of type of epilepsy and etiological factors in adults. Epilepsy Behav 5(Suppl 1):14–20
doi: 10.1016/j.yebeh.2003.11.003
Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2016) Ischemia/reperfusion. Compr Physiol 7(1):113–170. https://doi.org/10.1002/cphy.c160006
Kassab RB, El-Hennamy RE (2017) The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egypt J Basic Appl Sci 4(3):160–67
Kaur D, Sharma V, Deshmukh R (2019) Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. J Inflammopharmacology 27:663–677
doi: 10.1007/s10787-019-00580-x
Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127(2):97–109. https://doi.org/10.1016/j.jconrel.2007.12.018
Khan MA, Tania M, Wei C, Mei Z, Fu S, Cheng J, Xu J et al (2015) Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget 6(23):19580–91
pubmed: 26023736 pmcid: 4637306 doi: 10.18632/oncotarget.3973
Khazaei M, Nematollahi-Mahani SN, Mokhtari T, Sheikhbahaei F (2018) Review on Teucrium polium biological activities and medical characteristics against different pathologic situations. J Contemp Med Sci 4(1):1–6
Kostic M, Zivkovic N, Stojanovic I (2013) Multiple sclerosis and glutamate excitotoxicity. Rev Neurosci 24(1):71–88
pubmed: 23152401 doi: 10.1515/revneuro-2012-0062
Kumar A, Ratan RR (2016) Oxidative stress and Huntington’s disease: the good, the bad, and the ugly. J Huntingtons Dis 5(3):217–37
pubmed: 27662334 pmcid: 5310831 doi: 10.3233/JHD-160205
Lassmann H, Van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8(11):647–56
pubmed: 23007702 doi: 10.1038/nrneurol.2012.168
Li J, Khan MA, Wei C, Cheng J, Chen H, Yang L, Ijaz I et al (2017) Thymoquinone inhibits the migration and invasive characteristics of cervical cancer cells SiHa and CaSki in vitro by targeting epithelial to mesenchymal transition associated transcription factors Twist1 and Zeb1. Molecules (Basel, Switzerland) 22(12):2105
pubmed: 29207526 doi: 10.3390/molecules22122105
Liang L-P, Patel M (2006) Seizure-induced changes in mitochondrial redox status. Free Radical Biol Med 40(2):316–22
doi: 10.1016/j.freeradbiomed.2005.08.026
Liu Y, Zhu B, Wang X, Luo L, Li P, Paty DW, Cynader MS (2003) Bilirubin as a potent antioxidant suppresses experimental autoimmune encephalomyelitis: implications for the role of oxidative stress in the development of multiple sclerosis. J Neuroimmunol 139(1–2):27–35
pubmed: 12799017 doi: 10.1016/S0165-5728(03)00132-2
Lockman P, Mumper R, Khan M, Allen D (2002) Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Industr Pharm 28(1):1–13
doi: 10.1081/DDC-120001481
Löscher W, Schmidt DJE (2011) Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52(4):657–78
pubmed: 21426333 doi: 10.1111/j.1528-1167.2011.03024.x
Łukawski K, Czuczwar SJ (2023) Oxidative stress and neurodegeneration in animal models of seizures and epilepsy. Antioxidants 12(5):1049
pubmed: 37237916 pmcid: 10215527 doi: 10.3390/antiox12051049
Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G et al (2016) Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis 2016:9832839
pubmed: 27366343 pmcid: 4913065
Mahakizadeh S, Mokhtari T, Navaee F, Poorhassan M, Tajik A, Hassanzadeh G (2020) Effects of chronic hypoxia on the expression of seladin-1/Tuj1 and the number of dark neurons of hippocampus. J Chem Neuroanatomy 104:101744
doi: 10.1016/j.jchemneu.2020.101744
Michel CG, El-Sayed NS, Moustafa SF, Ezzat SM, Nesseem DI, El-Alfy TS (2011) Phytochemical and biological investigation of the extracts of Nigella sativa L. seed waste. Drug Test Anal 3(4):245–54
pubmed: 21309000 doi: 10.1002/dta.225
Mielcarek MJRD (2015) Huntington's disease is a multi-system disorder. 2015;3(1):e1058464. https://doi.org/10.1080/21675511.2015.1058464
Mohamed A, Shoker A, Bendjelloul F, Mare A, Alzrigh M, Benghuzzi H, Desin T (2003) Improvement of experimental allergic encephalomyelitis (EAE) by thymoquinone; an oxidative stress inhibitor. Biomed Sci Instrum 39:440–445
pubmed: 12724933
Mohamed A, Afridi DM, Garani O, Tucci M (2005) Thymoquinone inhibits the activation of NF-kappaB in the brain and spinal cord of experimental autoimmune encephalomyelitis. Biomed Sci Instrum 41:388–393
pubmed: 15850137
Mohamed A, Waris HM, Ramadan H, Quereshi M, Kalra J (2009) Amelioration of chronic relapsing experimental autoimmune encephalomyelitis (cr-eae) using thymoquinone - biomed 2009. Biomed Sci Instrum 45:274–279
pubmed: 19369775
Mokhtari T, Akbari M, Malek F, Kashani IR, Rastegar T, Noorbakhsh F, Ghazi-Khansari M et al (2017) Improvement of memory and learning by intracerebroventricular microinjection of T3 in rat model of ischemic brain stroke mediated by upregulation of BDNF and GDNF in CA1 hippocampal region. DARU J Pharm Sci 25(1):4
doi: 10.1186/s40199-017-0169-x
Mokhtari T, Mahahakizadeh S, Aligholi H, Ijaz S, Noori L, Hassanzadeh GJJCMS (2020) Triiodothyronine improves morphology and upregulates seladin-1 of neurospheres extracted from subventricular zone in streptozotocin-induced rat model of Alzheimer’s disease. J Contemp Med Sci 6:32–38
Mokhtari T, Lu M, El-Kenawy AE (2023) Potential anxiolytic and antidepressant-like effects of luteolin in a chronic constriction injury rat model of neuropathic pain: role of oxidative stress, neurotrophins, and inflammatory factors. Int Immunopharmacol 122:110520
pubmed: 37478667 doi: 10.1016/j.intimp.2023.110520
Mousavi S, Tayarani-Najaran Z, Asghari M, Sadeghnia HJC, M Neurobiology (2010) Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neurobiol 30(4):591–98
pubmed: 20054635 doi: 10.1007/s10571-009-9484-1
Nazir S, Farooq RK, Khan H, Alam T, Javed A (2021) Thymoquinone harbors protection against Concanavalin A-induced behavior deficit in BALB/c mice model. J Food Biochem 45(3):e13348
pubmed: 32618005 doi: 10.1111/jfbc.13348
Nazir S, Farooq RK, Nasir S, Hanif R, Javed A (2022) Therapeutic effect of Thymoquinone on behavioural response to UCMS and neuroinflammation in hippocampus and amygdala in BALB/c mice model. Psychopharmacol 239(1):47–58
doi: 10.1007/s00213-021-06038-9
Nigar S, Pottoo FH, Tabassum N, Verma SK, Javed MN (2016) Molecular insights into the role of inflammation and oxidative stress in epilepsy. J Adv Med Pharm Sci 10:1–9. https://doi.org/10.9734/JAMPS/2016/24441
doi: 10.9734/JAMPS/2016/24441
Nikolic L, Nobili P, Shen W, Audinat E (2020) Role of astrocyte purinergic signaling in epilepsy. Glia 68(9):1677–91. https://doi.org/10.1002/glia.23747
doi: 10.1002/glia.23747 pubmed: 31705600
Norsharina I, Maznah I, Iqbal S, Latiff LA (2013) Anti-aggregation effects of thymoquinone against Alzheimers-amyloid in vitro. J Med Plants Res 7(31):2280–88
doi: 10.5897/JMPR10.852
Odeh F, Ismail SI, Abu-Dahab R, Mahmoud IS, Al Bawab A (2012) Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug Deliv 19(8):371–77
pubmed: 23043626 doi: 10.3109/10717544.2012.727500
Odeh F, Al-Jaber H, Khater D (2014) Nanoflora—how nanotechnology enhanced the use of active phytochemicals. Appl Nanotechnol Drug Deliv 10:58704
Ohl K, Tenbrock K, Kipp M (2016) Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp Neurol 277:58–67
pubmed: 26626971 doi: 10.1016/j.expneurol.2015.11.010
Patel M (2016) Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci 37(9):768–778
pubmed: 27491897 pmcid: 5333771 doi: 10.1016/j.tips.2016.06.007
Pegoretti V, Swanson KA, Bethea JR, Probert L, Eisel ULM, Fischer R (2020) Inflammation and oxidative stress in multiple sclerosis: consequences for therapy development. Oxid Med Cell Longev 2020:7191080
pubmed: 32454942 pmcid: 7240663 doi: 10.1155/2020/7191080
Pires A, Fortuna A, Alves G, Falcão A (2009) Intranasal drug delivery: how, why and what for? J Pharm Pharmaceut Sci 12(3):288–311
Poorgholam P, Yaghmaei P, Hajebrahimi Z (2018) Thymoquinone recovers learning function in a rat model of Alzheimer’s disease. Avicenna J Phytomed 8(3):188–97
pubmed: 29881705 pmcid: 5987434
Qizilbash FF, Ashhar MU, Zafar A, Qamar Z, Ali J, Baboota S, Ghoneim MM et al (2022) Thymoquinone-enriched naringenin-loaded nanostructured lipid carrier for brain delivery via nasal route: in vitro prospect and in vivo therapeutic efficacy for the treatment of depression. Pharmaceutics 14(3):656
pubmed: 35336030 pmcid: 8953208 doi: 10.3390/pharmaceutics14030656
Quintanilla RA, Johnson GV (2009) Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res Bull 80(4–5):242–7
pubmed: 19622387 pmcid: 2757461 doi: 10.1016/j.brainresbull.2009.07.010
Radad K, Moldzio R, Taha M, Rausch WD (2009) Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. Phytother Res 23(5):696–700
pubmed: 19089849 doi: 10.1002/ptr.2708
Radad KS, Al-Shraim MM, Moustafa MF, Rausch W-D (2015) Neuroprotective role of thymoquinone against 1-methyl-4-phenylpyridinium-induced dopaminergic cell death in primary mesencephalic cell culture. Neurosci (Riyadh, Saudi Arabia) 20(1):10–16
Ramachandran S, Thangarajan SJMBD (2018) Thymoquinone loaded solid lipid nanoparticles counteracts 3-nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington’s disease. Metab Brain Dis 33(5):1459–70
pubmed: 29855977 doi: 10.1007/s11011-018-0252-0
Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammation 15(1):144
pubmed: 29764485 pmcid: 5952578 doi: 10.1186/s12974-018-1192-7
Rhie SJ, Jung E-Y, Shim I (2020) The role of neuroinflammation on pathogenesis of affective disorders. J Exercise Rehabil 16(1):2
doi: 10.12965/jer.2040016.008
Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C (2022) Neuroinflammation in Huntington’s disease: a starring role for astrocyte and microglia. Curr Neuropharmacol 20(6):1116–43
pubmed: 34852742 pmcid: 9886821 doi: 10.2174/1570159X19666211201094608
Safhi MM, Qumayri HM, Masmali AUM, Siddiqui R, Alam MF, Khan G, Anwer T (2019) Thymoquinone and fluoxetine alleviate depression via attenuating oxidative damage and inflammatory markers in type-2 diabetic rats. Arch Physiol Biochem 125(2):150–55
pubmed: 29482373 doi: 10.1080/13813455.2018.1443141
Saito Y, Nishio K, Ogawa Y, Kinumi T, Yoshida Y, Masuo Y, Niki E (2007) Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and-independent action. Free Radical Biol Med 42(5):675–85
doi: 10.1016/j.freeradbiomed.2006.12.004
Sedaghat R, Roghani M, Khalili M (2014) Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. Iranian J Pharmaceut Res: IJPR 13(1):227
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspect Med 1(1):a006189-a89
doi: 10.1101/cshperspect.a006189
Severina FF II, Severin GA Korshunova, Sumbatyan NV, Ilyasova TM, Simonyan RA, Rogov AG et al (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives. FEBS Lett 587(13):2018–24
pubmed: 23665033 doi: 10.1016/j.febslet.2013.04.043
Shao Y, Feng Y, Xie Y, Luo Q, Chen L, Li B, Chen Y (2016) Protective effects of thymoquinone against convulsant activity induced by lithium-pilocarpine in a model of status epilepticus. Neurochem Res 41(12):3399–406
pubmed: 27752802 doi: 10.1007/s11064-016-2074-y
Shao YY, Li B, Huang YM, Luo Q, Xie YM, Chen YH (2017) Thymoquinone attenuates brain injury via an anti-oxidative pathway in a status epilepticus rat model. Transl Neurosci 8:9–14
pubmed: 28400978 pmcid: 5384046 doi: 10.1515/tnsci-2017-0003
Sheikhbahaei F, Khazaei M, Rabzia A, Mansouri K, Ghanbari A (2016) Protective effects of thymoquinone against methotrexate-induced germ cell apoptosis in male mice. Int J Fertil Steril 9(4):541–47
pubmed: 26985343
Shikhbahaei F, Ghanbari A, Keshtmand Z (2018) Therapeutic effect of thymoquinone against methotrexate-induced damage on sperm parameters in mice Efecto terapé utico de la tiroyoquinona contra el daño inducido por metotrexato en los pará metros espermá ticos en ratones. Int J Morphol 36(2):519–22
doi: 10.4067/S0717-95022018000200519
Silachev DN, Plotnikov EY, Zorova LD, Pevzner IB, Sumbatyan NV, Korshunova GA, Gulyaev MV et al (2015) Neuroprotective effects of mitochondria-targeted plastoquinone and thymoquinone in a rat model of brain ischemia/reperfusion injury. Molecules 20(8):14487–503
pubmed: 26270657 pmcid: 6332348 doi: 10.3390/molecules200814487
Son EJ, Kim JH, Kim K, Park CB (2016) Quinone and its derivatives for energy harvesting and storage materials. J Mater Chem A 4(29):11179–202
doi: 10.1039/C6TA03123D
Spate S, Ramadan HH, Mohamed A (2010) Interleukins (IL-7 and IL-7r) gene expression and thymoquinones role in the amelioration of eae symptoms - biomed 2010. Biomed Sci Instrum 46:190–285
pubmed: 20467093
Su Y, Sun B, Gao X, Dong X, Fu L, Zhang Y, Li Z et al (2020) Intranasal delivery of targeted nanoparticles loaded with miR-132 to brain for the treatment of neurodegenerative diseases. Front Pharmacol 11:1165
pubmed: 32848773 pmcid: 7424054 doi: 10.3389/fphar.2020.01165
Subasinghe S, Unabia S, Barrow CJ, Mok SS, Aguilar MI, Small DH (2003) Cholesterol is necessary both for the toxic effect of Aβ peptides on vascular smooth muscle cells and for Aβ binding to vascular smooth muscle cell membranes. J Neurochem 84(3):471–79
pubmed: 12558967 doi: 10.1046/j.1471-4159.2003.01552.x
Surekha R, Sumathi T (2016) An efficient encapsulation of thymoquinone using solid lipid nanoparticle for brain targeted drug delivery: physicochemical characterization, pharmacokinetics and bio-distribution studies. Int J Pharm Clin Res 8(12):1616–1624
Tabrizi SJ, Ghosh R, Leavitt BR (2019) Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 101(5):801–819. https://doi.org/10.1016/j.neuron.2019.01.039
Taka E, Mazzio EA, Goodman CB, Redmon N, Flores-Rozas H, Reams R, Darling-Reed S et al (2015) Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells. J Neuroimmunol 286:5–12
pubmed: 26298318 pmcid: 4548297 doi: 10.1016/j.jneuroim.2015.06.011
Tauil CB, da Rocha Lima AD, Ferrari BB, da Silva VAG, Moraes AS, da Silva FM, Melo-Silva CA et al (2020) Depression and anxiety in patients with multiple sclerosis treated with interferon-beta or fingolimod: role of indoleamine 2,3-dioxygenase and pro-inflammatory cytokines. Brain, Behavior Immun Health 9:100162
doi: 10.1016/j.bbih.2020.100162
Taylor JM, Main BS, Crack PJ (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62(5):803–19
pubmed: 23291248 doi: 10.1016/j.neuint.2012.12.016
Teixeira NB, Picolo G, Giardini AC, Boumezbeur F, Pottier G, Kuhnast B, Servent D et al (2020) Alterations of peripheral nerve excitability in an experimental autoimmune encephalomyelitis mouse model for multiple sclerosis. J Neuroinflammation 17(1):1–14
doi: 10.1186/s12974-020-01936-9
Teng L, Kou C, Lu C, Xu J, Xie J, Lu J, Liu Y et al (2014) Involvement of the ERK pathway in the protective effects of glycyrrhizic acid against the MPP+-induced apoptosis of dopaminergic neuronal cells. Int J Mol Med 34(3):742–48
pubmed: 24993693 pmcid: 4121344 doi: 10.3892/ijmm.2014.1830
Thomas B (2009) Parkinson’s disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal 11(9):2077–2082
pubmed: 19624258 pmcid: 2819797 doi: 10.1089/ars.2009.2697
Tian F, Yuan C, Hu L, Shan S (2017) MicroRNA-93 inhibits inflammatory responses and cell apoptosis after cerebral ischemia reperfusion by targeting interleukin-1 receptor-associated kinase 4. Experimental Therapeutic Med 14(4):2903–10
doi: 10.3892/etm.2017.4874
Tian F, Liu R, Fan C, Sun Y, Huang X, Nie Z, Zhao X et al (2020) Effects of thymoquinone on small-molecule metabolites in a rat model of cerebral ischemia reperfusion injury assessed using MALDI-MSI. Metabolites 10(1):27. https://doi.org/10.3390/metabo10010027
Tozihi M, Shademan B, Yousefi H, Avci CB, Nourazarian A, Dehghan G (2023) Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury. Front Aging Neurosci 15:1227513
pubmed: 37600520 pmcid: 10436333 doi: 10.3389/fnagi.2023.1227513
Tsai Y-M, Chien C-F, Lin L-C, Tsai T-H (2011) Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int J Pharmaceutics 416(1):331–38
doi: 10.1016/j.ijpharm.2011.06.030
Ullah I, Badshah H, Naseer MI, Lee HY, Kim MO (2015) Thymoquinone and vitamin C attenuates pentylenetetrazole-induced seizures via activation of GABAB1 receptor in adult rats cortex and hippocampus. Neuromolecular Med 17(1):35–46
pubmed: 25429759 doi: 10.1007/s12017-014-8337-3
Velagapudi R, Kumar A, Bhatia HS, El-Bakoush A, Lepiarz I, Fiebich BL, Olajide OA (2017) Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int Immunopharmacol 48:17–29
pubmed: 28458100 doi: 10.1016/j.intimp.2017.04.018
Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46(11):1724–43
pubmed: 16302852 doi: 10.1111/j.1528-1167.2005.00298.x
Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of α-synuclein aggregates. Neuropathol 27(5):494–506
doi: 10.1111/j.1440-1789.2007.00803.x
Wang L, Zhang X, Xiong X, Zhu H, Chen R, Zhang S, Chen G et al (2022) Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke. Antioxidants (Basel) 11(12):2377. https://doi.org/10.3390/antiox11122377
Wee YV (2010) Inflammation in neurological disorders: a help or a hindrance? Neuroscientist 16(4):408–420
doi: 10.1177/1073858410371379
Witt KA, Davis TP (2006) CNS drug delivery: opioid peptides and the blood-brain barrier. The AAPS J 8(1):E76–E88
pubmed: 16584136 doi: 10.1208/aapsj080109
Xiao X-Y, Zhu Y-X, Bu J-Y, Li G-W, Zhou J-H, Zhou S-P (2016) Evaluation of neuroprotective effect of thymoquinone nanoformulation in the rodent cerebral ischemia-reperfusion model. Biomed Res Int 2016:2571060–2571160
pubmed: 27725936 pmcid: 5048094 doi: 10.1155/2016/2571060
Xie C, Sun J, Qiao W, Lu D, Wei L, Na M, Song Y et al (2011) Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. PLoS One 6(9):e24966
pubmed: 21949812 pmcid: 3176286 doi: 10.1371/journal.pone.0024966
Xu Y, Wang C, Klabnik JJ, O’Donnell JM (2014) Novel therapeutic targets in depression and anxiety: antioxidants as a candidate treatment. Current Neuropharmacol 12(2):108–19
doi: 10.2174/1570159X11666131120231448
Yang HM, Yang S, Huang SS, Tang BS, Guo JF (2017) Microglial activation in the pathogenesis of Huntington’s disease. Front Aging Neurosci 9:193
pubmed: 28674491 pmcid: 5474461 doi: 10.3389/fnagi.2017.00193
Yuan H, Chen J, Du YZ, Hu FQ, Zeng S, Zhao HL (2007) Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surf B Biointerfaces 58(2):157–164. https://doi.org/10.1016/j.colsurfb.2007.03.002
Yüksel A, Cengiz M, Seven M, Ulutin T (2000) Erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children with valproate and carbamazepine monotherapy. J Basic Clin Physiol Pharmacol 11(1):73–81
pubmed: 10851665 doi: 10.1515/JBCPP.2000.11.1.73
Yusuf M, Khan M, Alrobaian MM, Alghamdi SA, Warsi MH, Sultana S, Khan RA (2021) Brain targeted Polysorbate-80 coated PLGA thymoquinone nanoparticles for the treatment of Alzheimer’s disease, with biomechanistic insights. J Drug Deli Sci Technol 61:102214
doi: 10.1016/j.jddst.2020.102214
Zhang W, Peterson M, Beyer B, Frankel WN, Zhang Z-w (2014) Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J Neurosci 34(7):2754–63
pubmed: 24523563 pmcid: 3921436 doi: 10.1523/JNEUROSCI.4900-12.2014
Zhu M, Gong D (2020) A mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson disease shows that 2-aminoquinoline targets JNK phosphorylation. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research 26:e920989–e921089
pubmed: 32333598 doi: 10.12659/MSM.920989
Zhu Z, Yan J, Jiang W, X-g Yao J, Chen L Chen, Li C et al (2013) Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J Neurosci 33(32):13138–49
pubmed: 23926267 pmcid: 6619735 doi: 10.1523/JNEUROSCI.4790-12.2013

Auteurs

Maryam Saadat (M)

Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.

Narjes Dahmardeh (N)

Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran.

Fatemeh Sheikhbahaei (F)

Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran. f.sheikhbahaei@kmu.ac.ir.

Tahmineh Mokhtari (T)

Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.

Classifications MeSH