Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
27 Nov 2023
Historique:
received: 04 08 2023
accepted: 30 10 2023
revised: 06 10 2023
medline: 29 11 2023
pubmed: 27 11 2023
entrez: 27 11 2023
Statut: epublish

Résumé

Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ

Identifiants

pubmed: 38010414
doi: 10.1007/s00018-023-05026-w
pii: 10.1007/s00018-023-05026-w
doi:

Substances chimiques

Amyloid 0
Amyloid beta-Peptides 0
Apolipoproteins 0
Apolipoproteins E 0
Peptide Fragments 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

376

Subventions

Organisme : NIGMS NIH HHS
ID : GM067260
Pays : United States
Organisme : NIGMS NIH HHS
ID : GM135158
Pays : United States
Organisme : NIDDK NIH HHS
ID : 5T32DK007201-43
Pays : United States
Organisme : NHLBI NIH HHS
ID : HL036153.
Pays : United States

Commentaires et corrections

Type : UpdateOf

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Buxbaum JN, Dispenzieri A, Eisenberg DS, Fändrich M, Merlini G, Saraiva MJM, Sekijima Y, Westermark P (2022) Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 29:213–219. https://doi.org/10.1080/13506129.2022.2147636
doi: 10.1080/13506129.2022.2147636 pubmed: 36420821
Bloom GS (2014) Amyloid-β and Tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505. https://doi.org/10.1001/jamaneurol.2013.5847
doi: 10.1001/jamaneurol.2013.5847 pubmed: 24493463
Chen Y, Strickland MR, Soranno A, Holtzman DM (2021) Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. Neuron 109:205–221. https://doi.org/10.1016/j.neuron.2020.10.008
doi: 10.1016/j.neuron.2020.10.008 pubmed: 33176118
Martens YA, Zhao N, Liu C-C, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G (2022) ApoE cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 110:1304–1317. https://doi.org/10.1016/j.neuron.2022.03.004
doi: 10.1016/j.neuron.2022.03.004 pubmed: 35298921 pmcid: 9035117
Perneczky R, Jessen F, Grimmer T, Levin J, Flöel A, Peters O, Froelich L (2023) Anti-amyloid antibody therapies in Alzheimer’s disease. Brain 146:842–849. https://doi.org/10.1093/brain/awad005
doi: 10.1093/brain/awad005 pubmed: 36655336
Stewart KL, Radford SE (2017) Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophys Rev 9:405–419. https://doi.org/10.1007/s12551-017-0271-9
doi: 10.1007/s12551-017-0271-9 pubmed: 28631243 pmcid: 5578917
Misumi Y, Tabata Y, Tasaki M, Obayashi K, Yamakawa S, Nomura T, Ueda M (2023) Binding of serum-derived amyloid-associated proteins to amyloid fibrils. Amyloid 30:67–73. https://doi.org/10.1080/13506129.2022.2120800
doi: 10.1080/13506129.2022.2120800 pubmed: 36094798
Wisniewski T, Drummond E (2020) APOE-amyloid interaction: therapeutic targets. Neurobiol Dis 138:104784. https://doi.org/10.1016/j.nbd.2020.104784
doi: 10.1016/j.nbd.2020.104784 pubmed: 32027932 pmcid: 7118587
Murray KA, Hu CJ, Griner SL, Pan H, Bowler JT, Abskharon R, Rosenberg GM, Cheng X, Seidler PM, Eisenberg DS (2022) De novo designed protein inhibitors of amyloid aggregation and seeding. Proc Natl Acad Sci 119:e2206240119. https://doi.org/10.1073/pnas.2206240119
doi: 10.1073/pnas.2206240119 pubmed: 35969734 pmcid: 9407671
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE (2018) A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 19:755–773. https://doi.org/10.1038/s41580-018-0060-8
doi: 10.1038/s41580-018-0060-8 pubmed: 30237470
Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS (2021) The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell 184:4857–4873. https://doi.org/10.1016/j.cell.2021.08.013
doi: 10.1016/j.cell.2021.08.013 pubmed: 34534463 pmcid: 8772536
Lewkowicz E, Jayaraman S, Gursky O (2021) Protein amyloid cofactors: charged side-chain arrays meet their match? Trends Biochem Sci 46:626–629. https://doi.org/10.1016/j.tibs.2021.05.003
doi: 10.1016/j.tibs.2021.05.003 pubmed: 34210544 pmcid: 8415129
Tao Y, Sun Y, Lv S, Xia W, Zhao K, Xu Q, Zhao Q, He L, Le W, Wang Y, Liu C, Li D (2022) Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology. Nat Commun 13:4226. https://doi.org/10.1038/s41467-022-31790-7
doi: 10.1038/s41467-022-31790-7 pubmed: 35869048 pmcid: 9307803
Abskharon R, Sawaya MR, Boyer DR, Cao Q, Nguyen BA, Cascio D, Eisenberg DS (2022) Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation. Proc Natl Acad Sci 119:e2119952119. https://doi.org/10.1073/pnas.2119952119
doi: 10.1073/pnas.2119952119 pubmed: 35377792 pmcid: 9169762
Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, Kotecha A, Murzin AG, Peak-Chew SY, Macdonald J, Lavenir I, Garringer HJ, Gelpi E, Newell KL, Kovacs GG, Vidal R, Ghetti B, Ryskeldi-Falcon B, Scheres SHW, Goedert M (2022) Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 375:167–172. https://doi.org/10.1126/science.abm7285
doi: 10.1126/science.abm7285 pubmed: 35025654 pmcid: 7612234
Seuring C, Verasdonck J, Gath J, Ghosh D, Nespovitaya N, Wälti MA, Maji SK, Cadalbert R, Güntert P, Meier BH, Riek R (2020) The three-dimensional structure of human β-endorphin amyloid fibrils. Nat Struct Mol Biol 27:1178–1184. https://doi.org/10.1038/s41594-020-00515-z
doi: 10.1038/s41594-020-00515-z pubmed: 33046908
Seong S-Y, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4:469–478. https://doi.org/10.1038/nri1372
doi: 10.1038/nri1372 pubmed: 15173835
Frieg B, Antonschmidt L, Dienemann C, Geraets JA, Najbauer EE, Matthes D, de Groot BL, Andreas LB, Becker S, Griesinger C, Schröder GF (2022) The 3D structure of lipidic fibrils of α-synuclein. Nat Commun 13:6810. https://doi.org/10.1038/s41467-022-34552-7
doi: 10.1038/s41467-022-34552-7 pubmed: 36357403 pmcid: 9649780
Phillips MC (2014) Apolipoprotein E isoforms and lipoprotein metabolism: apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 66:616–623. https://doi.org/10.1002/iub.1314
doi: 10.1002/iub.1314 pubmed: 25328986
Mahley RW (2016) Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med 94:739–746. https://doi.org/10.1007/s00109-016-1427-y
doi: 10.1007/s00109-016-1427-y pubmed: 27277824
Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden C, Holtzman DM (2013) ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1220484110
doi: 10.1073/pnas.1220484110 pubmed: 23620513 pmcid: 3651443
Kanekiyo T, Xu H, Bu G (2014) ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners? Neuron 81:740–754. https://doi.org/10.1016/j.neuron.2014.01.045
doi: 10.1016/j.neuron.2014.01.045 pubmed: 24559670 pmcid: 3983361
Rasmussen KL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R (2018) Plasma apolipoprotein E levels and risk of dementia: a Mendelian randomization study of 106,562 individuals. Alzheimers Dement 14:71–80. https://doi.org/10.1016/j.jalz.2017.05.006
doi: 10.1016/j.jalz.2017.05.006 pubmed: 28774656
Segrest J, Jones M, De Loof H, Brouillette C, Venkatachalapathi Y, Anantharamaiah G (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res 33:141–166. https://doi.org/10.1016/S0022-2275(20)41536-6
doi: 10.1016/S0022-2275(20)41536-6 pubmed: 1569369
Morrow JA, Hatters DM, Lu B, Höchtl P, Oberg KA, Rupp B, Weisgraber KH (2002) Apolipoprotein E4 forms a molten globule. J Biol Chem 277:50380–50385. https://doi.org/10.1074/jbc.M204898200
doi: 10.1074/jbc.M204898200 pubmed: 12393895
Narayanaswami V, Maiorano JN, Dhanasekaran P, Ryan RO, Phillips MC, Lund-Katz S, Davidson WS (2004) Helix orientation of the functional domains in apolipoprotein e in discoidal high density lipoprotein particles. J Biol Chem 279:14273–14279. https://doi.org/10.1074/jbc.M313318200
doi: 10.1074/jbc.M313318200 pubmed: 14739281
Hatters DM, Voss JC, Budamagunta MS, Newhouse YN, Weisgraber KH (2009) Insight on the molecular envelope of lipid-bound apolipoprotein E from electron paramagnetic resonance spectroscopy. J Mol Biol 386:261–271. https://doi.org/10.1016/j.jmb.2008.12.040
doi: 10.1016/j.jmb.2008.12.040 pubmed: 19124026
Chen J, Li Q, Wang J (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci 108:14813–14818. https://doi.org/10.1073/pnas.1106420108
doi: 10.1073/pnas.1106420108 pubmed: 21873229 pmcid: 3169138
Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252:1817–1822. https://doi.org/10.1126/science.2063194
doi: 10.1126/science.2063194 pubmed: 2063194
Frieden C, Wang H, Ho CMW (2017) A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain–domain interactions. Proc Natl Acad Sci 114:6292–6297. https://doi.org/10.1073/pnas.1705080114
doi: 10.1073/pnas.1705080114 pubmed: 28559318 pmcid: 5474821
Henry N, Krammer E-M, Stengel F, Adams Q, Van Liefferinge F, Hubin E, Chaves R, Efremov R, Aebersold R, Vandenbussche G, Prévost M, Raussens V, Deroo S (2018) Lipidated apolipoprotein E4 structure and its receptor binding mechanism determined by a combined cross-linking coupled to mass spectrometry and molecular dynamics approach. PLOS Comput Biol 14:e1006165. https://doi.org/10.1371/journal.pcbi.1006165
doi: 10.1371/journal.pcbi.1006165 pubmed: 29933361 pmcid: 6033463
Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A, Schmechel D, Wisniewski T, Frangione B, Roses AD (1994) Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest 94:860–869. https://doi.org/10.1172/JCI117407
doi: 10.1172/JCI117407 pubmed: 8040342 pmcid: 296168
Golabek AA, Soto C, Vogel T, Wisniewski T (1996) The interaction between apolipoprotein E and Alzheimer’s amyloid β-peptide is dependent on β-peptide conformation. J Biol Chem 271:10602–10606. https://doi.org/10.1074/jbc.271.18.10602
doi: 10.1074/jbc.271.18.10602 pubmed: 8631862
Deroo S, Stengel F, Mohammadi A, Henry N, Hubin E, Krammer E-M, Aebersold R, Raussens V (2015) Chemical cross-linking/mass spectrometry maps the amyloid β peptide binding region on both apolipoprotein E domains. ACS Chem Biol 10:1010–1016. https://doi.org/10.1021/cb500994j
doi: 10.1021/cb500994j pubmed: 25546376
Ghosh S, Sil TB, Dolai S, Garai K (2019) High-affinity multivalent interactions between apolipoprotein E and the oligomers of amyloid-β. FEBS J 286:4737–4753. https://doi.org/10.1111/febs.14988
doi: 10.1111/febs.14988 pubmed: 31287614
Gunzburg MJ, Perugini MA, Howlett GJ (2007) Structural basis for the recognition and cross-linking of amyloid fibrils by human apolipoprotein E. J Biol Chem 282:35831–35841. https://doi.org/10.1074/jbc.M706425200
doi: 10.1074/jbc.M706425200 pubmed: 17916554
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923. https://doi.org/10.1126/science.8346443
doi: 10.1126/science.8346443 pubmed: 8346443
Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90:1977–1981. https://doi.org/10.1073/pnas.90.5.1977
doi: 10.1073/pnas.90.5.1977 pubmed: 8446617 pmcid: 46003
Morrow JA, Segall ML, Lund-Katz S, Phillips MC, Knapp M, Rupp B, Weisgraber KH (2000) Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry 39:11657–11666. https://doi.org/10.1021/bi000099m
doi: 10.1021/bi000099m pubmed: 10995233
Dafnis I, Argyri L, Sagnou M, Tzinia A, Tsilibary EC, Stratikos E, Chroni A (2016) The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific. Sci Rep 6:30654. https://doi.org/10.1038/srep30654
doi: 10.1038/srep30654 pubmed: 27476701 pmcid: 4967930
Mouchard A, Boutonnet M-C, Mazzocco C, Biendon N, Macrez N, Network N-C (2019) ApoE-fragment/Aβ heteromers in the brain of patients with Alzheimer’s disease. Sci Rep 9:3989. https://doi.org/10.1038/s41598-019-40438-4
doi: 10.1038/s41598-019-40438-4 pubmed: 30850702 pmcid: 6408522
Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, Leone M, Solfrizzi V, Greco A, Daniele A, Watling M, Panza F, Seripa D (2022) Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther Adv Chronic Dis 13:204062232210816. https://doi.org/10.1177/20406223221081605
doi: 10.1177/20406223221081605
Moon H-J, Haroutunian V, Zhao L (2022) Human apolipoprotein E isoforms are differentially sialylated and the sialic acid moiety in ApoE2 attenuates ApoE2-Aβ interaction and Aβ fibrillation. Neurobiol Dis 164:105631. https://doi.org/10.1016/j.nbd.2022.105631
doi: 10.1016/j.nbd.2022.105631 pubmed: 35041991 pmcid: 9809161
Lanfranco MF, Ng CA, Rebeck GW (2020) ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int J Mol Sci 21:6336. https://doi.org/10.3390/ijms21176336
doi: 10.3390/ijms21176336 pubmed: 32882843 pmcid: 7503657
Blanchard JW, Akay LA, Davila-Velderrain J, von Maydell D, Mathys H, Davidson SM, Effenberger A, Chen C-Y, Maner-Smith K, Hajjar I, Ortlund EA, Bula M, Agbas E, Ng A, Jiang X, Kahn M, Blanco-Duque C, Lavoie N, Liu L, Reyes R, Lin Y-T, Ko T, R’Bibo L, Ralvenius WT, Bennett DA, Cam HP, Kellis M, Tsai L-H (2022) APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 611:769–779. https://doi.org/10.1038/s41586-022-05439-w
doi: 10.1038/s41586-022-05439-w pubmed: 36385529 pmcid: 9870060
William Rebeck G, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11:575–580. https://doi.org/10.1016/0896-6273(93)90070-8
doi: 10.1016/0896-6273(93)90070-8
Carter DB (2005) The Interaction of Amyloid-β with ApoE: The form of beta amyloid is a partial determinant of the interaction with Apolipoprotein E. In: Harris JR, Fahrenholz F (eds) Alzheimer’s Disease. Springer, Boston, pp 255–272
doi: 10.1007/0-387-23226-5_13
Balu D, Karstens AJ, Loukenas E, Maldonado Weng J, York JM, Valencia-Olvera AC, LaDu MJ (2019) The role of APOE in transgenic mouse models of AD. Neurosci Lett 707:134285. https://doi.org/10.1016/j.neulet.2019.134285
doi: 10.1016/j.neulet.2019.134285 pubmed: 31150730 pmcid: 6717006
Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 97:2892–2897. https://doi.org/10.1073/pnas.050004797
doi: 10.1073/pnas.050004797 pubmed: 10694577 pmcid: 16026
Liu C-C, Zhao N, Fu Y, Wang N, Linares C, Tsai C-W, Bu G (2017) ApoE4 accelerates early seeding of amyloid pathologY. Neuron 96:1024-1032.e3. https://doi.org/10.1016/j.neuron.2017.11.013
doi: 10.1016/j.neuron.2017.11.013 pubmed: 29216449 pmcid: 5948105
Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N, Valencia-Olvera AC, LaDu MJ (2017) EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimerʼns disease. J Lipid Res 58:1733–1755. https://doi.org/10.1194/jlr.R076315
doi: 10.1194/jlr.R076315 pubmed: 28389477 pmcid: 5580905
Wood SJ, Chan W, Wetzel R (1996) An ApoE-Aβ inhibition complex in Aβ fibril extension. Chem Biol 3:949–956. https://doi.org/10.1016/S1074-5521(96)90183-0
doi: 10.1016/S1074-5521(96)90183-0 pubmed: 8939715
Endo Y, Hasegawa K, Nomura R, Arishima H, Kikuta K, Yamashita T, Inoue Y, Ueda M, Ando Y, Wilson MR, Hamano T, Nakamoto Y, Naiki H (2019) Apolipoprotein E and clusterin inhibit the early phase of amyloid-β aggregation in an in vitro model of cerebral amyloid angiopathy. Acta Neuropathol Commun 7:12. https://doi.org/10.1186/s40478-019-0662-1
doi: 10.1186/s40478-019-0662-1 pubmed: 30691533 pmcid: 6348632
Aleshkov S, Abraham CR, Zannis VI (1997) Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide β (1–40). Relevance to Alzheimer’s disease. Biochemistry 36:10571–10580. https://doi.org/10.1021/bi9626362
doi: 10.1021/bi9626362 pubmed: 9265639
Garai K, Verghese PB, Baban B, Holtzman DM, Frieden C (2014) The binding of apolipoprotein E to oligomers and fibrils of amyloid-β alters the kinetics of amyloid aggregation. Biochemistry 53:6323–6331. https://doi.org/10.1021/bi5008172
doi: 10.1021/bi5008172 pubmed: 25207746
Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A (2022) Endogenous human proteins interfering with amyloid formation. Biomolecules 12:446. https://doi.org/10.3390/biom12030446
doi: 10.3390/biom12030446 pubmed: 35327638 pmcid: 8946693
Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993) Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci 90:8098–8102. https://doi.org/10.1073/pnas.90.17.8098
doi: 10.1073/pnas.90.17.8098 pubmed: 8367470 pmcid: 47295
Wisniewski T, Castaño EM, Golabek A, Vogel T, Frangione B (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 145:1030–1035
pubmed: 7977635 pmcid: 1887417
Naiki H, Gejyo F, Nakakuki K (1997) Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer’s β-amyloid fibril formation in Vitro. Biochemistry 36:6243–6250. https://doi.org/10.1021/bi9624705
doi: 10.1021/bi9624705 pubmed: 9166797
Hori Y, Hashimoto T, Nomoto H, Hyman BT, Iwatsubo T (2015) Role of apolipoprotein E in β-amyloidogenesis. J Biol Chem 290:15163–15174. https://doi.org/10.1074/jbc.M114.622209
doi: 10.1074/jbc.M114.622209 pubmed: 25918154 pmcid: 4463458
Evans KC, Berger EP, Cho CG, Weisgraber KH, Lansbury PT (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci 92:763–767. https://doi.org/10.1073/pnas.92.3.763
doi: 10.1073/pnas.92.3.763 pubmed: 7846048 pmcid: 42700
Islam T, Gharibyan AL, Golchin SA, Pettersson N, Brännström K, Hedberg I, Virta M, Olofsson L, Olofsson A (2020) Apolipoprotein E impairs amyloid-β fibril elongation and maturation. FEBS J 287:1208–1219. https://doi.org/10.1111/febs.15075
doi: 10.1111/febs.15075 pubmed: 31571352
Sahoo BR, Bekier ME, Liu Z, Kocman V, Stoddard AK, Anantharamaiah GM, Nowick J, Fierke CA, Wang Y, Ramamoorthy A (2020) Structural interaction of apolipoprotein A-I mimetic peptide with amyloid-β generates toxic hetero-oligomers. J Mol Biol 432:1020–1034. https://doi.org/10.1016/j.jmb.2019.12.005
doi: 10.1016/j.jmb.2019.12.005 pubmed: 31866295
Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A, Schmidt M, Sigurdson CJ, Jucker M, Fändrich M (2019) Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat Commun 10:4760. https://doi.org/10.1038/s41467-019-12683-8
doi: 10.1038/s41467-019-12683-8 pubmed: 31664019 pmcid: 6820800
Lu J-X, Qiang W, Yau W-M, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268. https://doi.org/10.1016/j.cell.2013.08.035
doi: 10.1016/j.cell.2013.08.035 pubmed: 24034249
Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS (2008) Structure and dynamics of human apolipoprotein CIII. J Biol Chem 283:17416–17427. https://doi.org/10.1074/jbc.M800756200
doi: 10.1074/jbc.M800756200 pubmed: 18408013
Shih Y-H, Tsai K-J, Lee C-W, Shiesh S-C, Chen W-T, Pai M-C, Kuo Y-M (2014) Apolipoprotein C-III is an amyloid-β-binding protein and an early marker for Alzheimer’s disease. J Alzheimers Dis 41:855–865. https://doi.org/10.3233/JAD-140111
doi: 10.3233/JAD-140111 pubmed: 24685634
Wang Q, Zhou W, Zhang J (2019) Higher apolipoprotein C-III levels in cerebrospinal fluid are associated with slower cognitive decline in mild cognitive impairment. J Alzheimers Dis 67:961–969. https://doi.org/10.3233/JAD-181096
doi: 10.3233/JAD-181096 pubmed: 30689582
Nolte RT, Atkinson D (1992) Conformational analysis of apolipoprotein A-I and E-3 based on primary sequence and circular dichroism. Biophys J 63:1221–1239. https://doi.org/10.1016/S0006-3495(92)81698-3
doi: 10.1016/S0006-3495(92)81698-3 pubmed: 1477274 pmcid: 1261425
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12:255–278. https://doi.org/10.1038/nprot.2016.169
doi: 10.1038/nprot.2016.169 pubmed: 28079879 pmcid: 5540229
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. https://doi.org/10.1107/S0907444904019158
doi: 10.1107/S0907444904019158 pubmed: 15572765
Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kalé LV, Schulten K, Chipot C, Tajkhorshid E (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130. https://doi.org/10.1063/5.0014475
doi: 10.1063/5.0014475 pubmed: 32752662 pmcid: 7395834
Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5
doi: 10.1016/0263-7855(96)00018-5 pubmed: 8744570
Beglov D, Hall DR, Wakefield AE, Luo L, Allen KN, Kozakov D, Whitty A, Vajda S (2018) Exploring the structural origins of cryptic sites on proteins. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1711490115
doi: 10.1073/pnas.1711490115 pubmed: 29581267 pmcid: 5899430
Tamamizu-Kato S, Cohen JK, Drake CB, Kosaraju MG, Drury J, Narayanaswami V (2008) Interaction with amyloid β peptide compromises the lipid binding function of apolipoprotein E. Biochemistry 47:5225–5234. https://doi.org/10.1021/bi702097s
doi: 10.1021/bi702097s pubmed: 18407659
Peters-Libeu CA, Newhouse Y, Hatters DM, Weisgraber KH (2006) Model of biologically active apolipoprotein E bound to dipalmitoylphosphatidylcholine. J Biol Chem 281:1073–1079. https://doi.org/10.1074/jbc.M510851200
doi: 10.1074/jbc.M510851200 pubmed: 16278220
Baumann MH, Kallijärvi J, Lankinen H, Soto C, Haltia M (2000) Apolipoprotein E includes a binding site which is recognized by several amyloidogenic polypeptides. Biochem J 349:77–84. https://doi.org/10.1042/bj3490077
doi: 10.1042/bj3490077 pubmed: 10861213 pmcid: 1221122
Willander H, Askarieh G, Landreh M, Westermark P, Nordling K, Keränen H, Hermansson E, Hamvas A, Nogee LM, Bergman T, Saenz A, Casals C, Åqvist J, Jörnvall H, Berglund H, Presto J, Knight SD, Johansson J (2012) High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein C. Proc Natl Acad Sci 109:2325–2329. https://doi.org/10.1073/pnas.1114740109
doi: 10.1073/pnas.1114740109 pubmed: 22308375 pmcid: 3289314
Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstål H, Dolfe L, Dunning C, Yang X, Frohm B, Vendruscolo M, Johansson J, Dobson CM, Fisahn A, Knowles TPJ, Linse S (2015) A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol 22:207–213. https://doi.org/10.1038/nsmb.2971
doi: 10.1038/nsmb.2971 pubmed: 25686087 pmcid: 4595974
Törnquist M, Cukalevski R, Weininger U, Meisl G, Knowles TPJ, Leiding T, Malmendal A, Akke M, Linse S (2020) Ultrastructural evidence for self-replication of Alzheimer-associated Aβ42 amyloid along the sides of fibrils. Proc Natl Acad Sci 117:11265–11273. https://doi.org/10.1073/pnas.1918481117
doi: 10.1073/pnas.1918481117 pubmed: 32439711 pmcid: 7260961
Gursky O (2005) Apolipoprotein structure and dynamics. Curr Opin Lipidol 16:287–294. https://doi.org/10.1097/01.mol.0000169348.61191.ac
doi: 10.1097/01.mol.0000169348.61191.ac pubmed: 15891389
Bussell R, Eliezer D (2003) A structural and functional role for 11-mer repeats in α-Synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778. https://doi.org/10.1016/S0022-2836(03)00520-5
doi: 10.1016/S0022-2836(03)00520-5 pubmed: 12787676
Saio T, Guan X, Rossi P, Economou A, Kalodimos CG (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1250494. https://doi.org/10.1126/science.1250494
doi: 10.1126/science.1250494 pubmed: 24812405 pmcid: 4070327
Fu Y, Zhao J, Atagi Y, Nielsen HM, Liu C-C, Zheng H, Shinohara M, Kanekiyo T, Bu G (2016) Apolipoprotein E lipoprotein particles inhibit amyloid-β uptake through cell surface heparan sulphate proteoglycan. Mol Neurodegener 11:37. https://doi.org/10.1186/s13024-016-0099-y
doi: 10.1186/s13024-016-0099-y pubmed: 27151330 pmcid: 4857252
DeToma AS, Salamekh S, Ramamoorthy A, Lim MH (2012) Misfolded proteins in Alzheimer’s disease and type II diabetes. Chem Soc Rev 41:608–621. https://doi.org/10.1039/c1cs15112f
doi: 10.1039/c1cs15112f pubmed: 21818468
Zhang Y, Gao H, Zheng W, Xu H (2022) Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer’s disease. Neurobiol Dis 172:105824. https://doi.org/10.1016/j.nbd.2022.105824
doi: 10.1016/j.nbd.2022.105824 pubmed: 35878744
Wallin C, Jarvet J, Biverstål H, Wärmländer S, Danielsson J, Gräslund A, Abelein A (2020) Metal ion coordination delays amyloid-β peptide self-assembly by forming an aggregation-inert complex. J Biol Chem 295:7224–7234. https://doi.org/10.1074/jbc.RA120.012738
doi: 10.1074/jbc.RA120.012738 pubmed: 32241918 pmcid: 7247290
Parhizkar S, Holtzman DM (2022) APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Semin Immunol 59:101594. https://doi.org/10.1016/j.smim.2022.101594
doi: 10.1016/j.smim.2022.101594 pubmed: 35232622 pmcid: 9411266
Huynh T-PV, Davis AA, Ulrich JD, Holtzman DM (2017) Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J Lipid Res 58:824–836. https://doi.org/10.1194/jlr.R075481
doi: 10.1194/jlr.R075481 pubmed: 28246336 pmcid: 5408619
Ramamoorthy A, Lim MH (2013) Structural characterization and inhibition of toxic amyloid-β oligomeric intermediates. Biophys J 105:287–288. https://doi.org/10.1016/j.bpj.2013.05.004
doi: 10.1016/j.bpj.2013.05.004 pubmed: 23870249 pmcid: 3714932
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea J-E, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P (2021) Amyloid oligomers: a joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, Type II diabetes, and amyotrophic lateral sclerosis. Chem Rev 121:2545–2647. https://doi.org/10.1021/acs.chemrev.0c01122
doi: 10.1021/acs.chemrev.0c01122 pubmed: 33543942 pmcid: 8836097

Auteurs

Emily Lewkowicz (E)

Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA.

Mari N Nakamura (MN)

Undergraduate program, Department of Chemistry and Biochemistry, Middlebury College, 14 Old Chapel Rd, Middlebury, VT, 05753, USA.

Michael J Rynkiewicz (MJ)

Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA.

Olga Gursky (O)

Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA. gursky@bu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH