Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids.
Amphipathic apolipoprotein α-helices
Amyloid signature proteins
Atomic structures
Cryptic binding sites
Exposed hydrophobic surfaces
Fibril polymorphs
Journal
Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402
Informations de publication
Date de publication:
27 Nov 2023
27 Nov 2023
Historique:
received:
04
08
2023
accepted:
30
10
2023
revised:
06
10
2023
medline:
29
11
2023
pubmed:
27
11
2023
entrez:
27
11
2023
Statut:
epublish
Résumé
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ
Identifiants
pubmed: 38010414
doi: 10.1007/s00018-023-05026-w
pii: 10.1007/s00018-023-05026-w
doi:
Substances chimiques
Amyloid
0
Amyloid beta-Peptides
0
Apolipoproteins
0
Apolipoproteins E
0
Peptide Fragments
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
376Subventions
Organisme : NIGMS NIH HHS
ID : GM067260
Pays : United States
Organisme : NIGMS NIH HHS
ID : GM135158
Pays : United States
Organisme : NIDDK NIH HHS
ID : 5T32DK007201-43
Pays : United States
Organisme : NHLBI NIH HHS
ID : HL036153.
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Buxbaum JN, Dispenzieri A, Eisenberg DS, Fändrich M, Merlini G, Saraiva MJM, Sekijima Y, Westermark P (2022) Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 29:213–219. https://doi.org/10.1080/13506129.2022.2147636
doi: 10.1080/13506129.2022.2147636
pubmed: 36420821
Bloom GS (2014) Amyloid-β and Tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505. https://doi.org/10.1001/jamaneurol.2013.5847
doi: 10.1001/jamaneurol.2013.5847
pubmed: 24493463
Chen Y, Strickland MR, Soranno A, Holtzman DM (2021) Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. Neuron 109:205–221. https://doi.org/10.1016/j.neuron.2020.10.008
doi: 10.1016/j.neuron.2020.10.008
pubmed: 33176118
Martens YA, Zhao N, Liu C-C, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G (2022) ApoE cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 110:1304–1317. https://doi.org/10.1016/j.neuron.2022.03.004
doi: 10.1016/j.neuron.2022.03.004
pubmed: 35298921
pmcid: 9035117
Perneczky R, Jessen F, Grimmer T, Levin J, Flöel A, Peters O, Froelich L (2023) Anti-amyloid antibody therapies in Alzheimer’s disease. Brain 146:842–849. https://doi.org/10.1093/brain/awad005
doi: 10.1093/brain/awad005
pubmed: 36655336
Stewart KL, Radford SE (2017) Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophys Rev 9:405–419. https://doi.org/10.1007/s12551-017-0271-9
doi: 10.1007/s12551-017-0271-9
pubmed: 28631243
pmcid: 5578917
Misumi Y, Tabata Y, Tasaki M, Obayashi K, Yamakawa S, Nomura T, Ueda M (2023) Binding of serum-derived amyloid-associated proteins to amyloid fibrils. Amyloid 30:67–73. https://doi.org/10.1080/13506129.2022.2120800
doi: 10.1080/13506129.2022.2120800
pubmed: 36094798
Wisniewski T, Drummond E (2020) APOE-amyloid interaction: therapeutic targets. Neurobiol Dis 138:104784. https://doi.org/10.1016/j.nbd.2020.104784
doi: 10.1016/j.nbd.2020.104784
pubmed: 32027932
pmcid: 7118587
Murray KA, Hu CJ, Griner SL, Pan H, Bowler JT, Abskharon R, Rosenberg GM, Cheng X, Seidler PM, Eisenberg DS (2022) De novo designed protein inhibitors of amyloid aggregation and seeding. Proc Natl Acad Sci 119:e2206240119. https://doi.org/10.1073/pnas.2206240119
doi: 10.1073/pnas.2206240119
pubmed: 35969734
pmcid: 9407671
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE (2018) A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 19:755–773. https://doi.org/10.1038/s41580-018-0060-8
doi: 10.1038/s41580-018-0060-8
pubmed: 30237470
Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS (2021) The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell 184:4857–4873. https://doi.org/10.1016/j.cell.2021.08.013
doi: 10.1016/j.cell.2021.08.013
pubmed: 34534463
pmcid: 8772536
Lewkowicz E, Jayaraman S, Gursky O (2021) Protein amyloid cofactors: charged side-chain arrays meet their match? Trends Biochem Sci 46:626–629. https://doi.org/10.1016/j.tibs.2021.05.003
doi: 10.1016/j.tibs.2021.05.003
pubmed: 34210544
pmcid: 8415129
Tao Y, Sun Y, Lv S, Xia W, Zhao K, Xu Q, Zhao Q, He L, Le W, Wang Y, Liu C, Li D (2022) Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology. Nat Commun 13:4226. https://doi.org/10.1038/s41467-022-31790-7
doi: 10.1038/s41467-022-31790-7
pubmed: 35869048
pmcid: 9307803
Abskharon R, Sawaya MR, Boyer DR, Cao Q, Nguyen BA, Cascio D, Eisenberg DS (2022) Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation. Proc Natl Acad Sci 119:e2119952119. https://doi.org/10.1073/pnas.2119952119
doi: 10.1073/pnas.2119952119
pubmed: 35377792
pmcid: 9169762
Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, Kotecha A, Murzin AG, Peak-Chew SY, Macdonald J, Lavenir I, Garringer HJ, Gelpi E, Newell KL, Kovacs GG, Vidal R, Ghetti B, Ryskeldi-Falcon B, Scheres SHW, Goedert M (2022) Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 375:167–172. https://doi.org/10.1126/science.abm7285
doi: 10.1126/science.abm7285
pubmed: 35025654
pmcid: 7612234
Seuring C, Verasdonck J, Gath J, Ghosh D, Nespovitaya N, Wälti MA, Maji SK, Cadalbert R, Güntert P, Meier BH, Riek R (2020) The three-dimensional structure of human β-endorphin amyloid fibrils. Nat Struct Mol Biol 27:1178–1184. https://doi.org/10.1038/s41594-020-00515-z
doi: 10.1038/s41594-020-00515-z
pubmed: 33046908
Seong S-Y, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4:469–478. https://doi.org/10.1038/nri1372
doi: 10.1038/nri1372
pubmed: 15173835
Frieg B, Antonschmidt L, Dienemann C, Geraets JA, Najbauer EE, Matthes D, de Groot BL, Andreas LB, Becker S, Griesinger C, Schröder GF (2022) The 3D structure of lipidic fibrils of α-synuclein. Nat Commun 13:6810. https://doi.org/10.1038/s41467-022-34552-7
doi: 10.1038/s41467-022-34552-7
pubmed: 36357403
pmcid: 9649780
Phillips MC (2014) Apolipoprotein E isoforms and lipoprotein metabolism: apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 66:616–623. https://doi.org/10.1002/iub.1314
doi: 10.1002/iub.1314
pubmed: 25328986
Mahley RW (2016) Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med 94:739–746. https://doi.org/10.1007/s00109-016-1427-y
doi: 10.1007/s00109-016-1427-y
pubmed: 27277824
Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden C, Holtzman DM (2013) ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1220484110
doi: 10.1073/pnas.1220484110
pubmed: 23620513
pmcid: 3651443
Kanekiyo T, Xu H, Bu G (2014) ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners? Neuron 81:740–754. https://doi.org/10.1016/j.neuron.2014.01.045
doi: 10.1016/j.neuron.2014.01.045
pubmed: 24559670
pmcid: 3983361
Rasmussen KL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R (2018) Plasma apolipoprotein E levels and risk of dementia: a Mendelian randomization study of 106,562 individuals. Alzheimers Dement 14:71–80. https://doi.org/10.1016/j.jalz.2017.05.006
doi: 10.1016/j.jalz.2017.05.006
pubmed: 28774656
Segrest J, Jones M, De Loof H, Brouillette C, Venkatachalapathi Y, Anantharamaiah G (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res 33:141–166. https://doi.org/10.1016/S0022-2275(20)41536-6
doi: 10.1016/S0022-2275(20)41536-6
pubmed: 1569369
Morrow JA, Hatters DM, Lu B, Höchtl P, Oberg KA, Rupp B, Weisgraber KH (2002) Apolipoprotein E4 forms a molten globule. J Biol Chem 277:50380–50385. https://doi.org/10.1074/jbc.M204898200
doi: 10.1074/jbc.M204898200
pubmed: 12393895
Narayanaswami V, Maiorano JN, Dhanasekaran P, Ryan RO, Phillips MC, Lund-Katz S, Davidson WS (2004) Helix orientation of the functional domains in apolipoprotein e in discoidal high density lipoprotein particles. J Biol Chem 279:14273–14279. https://doi.org/10.1074/jbc.M313318200
doi: 10.1074/jbc.M313318200
pubmed: 14739281
Hatters DM, Voss JC, Budamagunta MS, Newhouse YN, Weisgraber KH (2009) Insight on the molecular envelope of lipid-bound apolipoprotein E from electron paramagnetic resonance spectroscopy. J Mol Biol 386:261–271. https://doi.org/10.1016/j.jmb.2008.12.040
doi: 10.1016/j.jmb.2008.12.040
pubmed: 19124026
Chen J, Li Q, Wang J (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci 108:14813–14818. https://doi.org/10.1073/pnas.1106420108
doi: 10.1073/pnas.1106420108
pubmed: 21873229
pmcid: 3169138
Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252:1817–1822. https://doi.org/10.1126/science.2063194
doi: 10.1126/science.2063194
pubmed: 2063194
Frieden C, Wang H, Ho CMW (2017) A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain–domain interactions. Proc Natl Acad Sci 114:6292–6297. https://doi.org/10.1073/pnas.1705080114
doi: 10.1073/pnas.1705080114
pubmed: 28559318
pmcid: 5474821
Henry N, Krammer E-M, Stengel F, Adams Q, Van Liefferinge F, Hubin E, Chaves R, Efremov R, Aebersold R, Vandenbussche G, Prévost M, Raussens V, Deroo S (2018) Lipidated apolipoprotein E4 structure and its receptor binding mechanism determined by a combined cross-linking coupled to mass spectrometry and molecular dynamics approach. PLOS Comput Biol 14:e1006165. https://doi.org/10.1371/journal.pcbi.1006165
doi: 10.1371/journal.pcbi.1006165
pubmed: 29933361
pmcid: 6033463
Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A, Schmechel D, Wisniewski T, Frangione B, Roses AD (1994) Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest 94:860–869. https://doi.org/10.1172/JCI117407
doi: 10.1172/JCI117407
pubmed: 8040342
pmcid: 296168
Golabek AA, Soto C, Vogel T, Wisniewski T (1996) The interaction between apolipoprotein E and Alzheimer’s amyloid β-peptide is dependent on β-peptide conformation. J Biol Chem 271:10602–10606. https://doi.org/10.1074/jbc.271.18.10602
doi: 10.1074/jbc.271.18.10602
pubmed: 8631862
Deroo S, Stengel F, Mohammadi A, Henry N, Hubin E, Krammer E-M, Aebersold R, Raussens V (2015) Chemical cross-linking/mass spectrometry maps the amyloid β peptide binding region on both apolipoprotein E domains. ACS Chem Biol 10:1010–1016. https://doi.org/10.1021/cb500994j
doi: 10.1021/cb500994j
pubmed: 25546376
Ghosh S, Sil TB, Dolai S, Garai K (2019) High-affinity multivalent interactions between apolipoprotein E and the oligomers of amyloid-β. FEBS J 286:4737–4753. https://doi.org/10.1111/febs.14988
doi: 10.1111/febs.14988
pubmed: 31287614
Gunzburg MJ, Perugini MA, Howlett GJ (2007) Structural basis for the recognition and cross-linking of amyloid fibrils by human apolipoprotein E. J Biol Chem 282:35831–35841. https://doi.org/10.1074/jbc.M706425200
doi: 10.1074/jbc.M706425200
pubmed: 17916554
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923. https://doi.org/10.1126/science.8346443
doi: 10.1126/science.8346443
pubmed: 8346443
Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90:1977–1981. https://doi.org/10.1073/pnas.90.5.1977
doi: 10.1073/pnas.90.5.1977
pubmed: 8446617
pmcid: 46003
Morrow JA, Segall ML, Lund-Katz S, Phillips MC, Knapp M, Rupp B, Weisgraber KH (2000) Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry 39:11657–11666. https://doi.org/10.1021/bi000099m
doi: 10.1021/bi000099m
pubmed: 10995233
Dafnis I, Argyri L, Sagnou M, Tzinia A, Tsilibary EC, Stratikos E, Chroni A (2016) The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific. Sci Rep 6:30654. https://doi.org/10.1038/srep30654
doi: 10.1038/srep30654
pubmed: 27476701
pmcid: 4967930
Mouchard A, Boutonnet M-C, Mazzocco C, Biendon N, Macrez N, Network N-C (2019) ApoE-fragment/Aβ heteromers in the brain of patients with Alzheimer’s disease. Sci Rep 9:3989. https://doi.org/10.1038/s41598-019-40438-4
doi: 10.1038/s41598-019-40438-4
pubmed: 30850702
pmcid: 6408522
Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, Leone M, Solfrizzi V, Greco A, Daniele A, Watling M, Panza F, Seripa D (2022) Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther Adv Chronic Dis 13:204062232210816. https://doi.org/10.1177/20406223221081605
doi: 10.1177/20406223221081605
Moon H-J, Haroutunian V, Zhao L (2022) Human apolipoprotein E isoforms are differentially sialylated and the sialic acid moiety in ApoE2 attenuates ApoE2-Aβ interaction and Aβ fibrillation. Neurobiol Dis 164:105631. https://doi.org/10.1016/j.nbd.2022.105631
doi: 10.1016/j.nbd.2022.105631
pubmed: 35041991
pmcid: 9809161
Lanfranco MF, Ng CA, Rebeck GW (2020) ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int J Mol Sci 21:6336. https://doi.org/10.3390/ijms21176336
doi: 10.3390/ijms21176336
pubmed: 32882843
pmcid: 7503657
Blanchard JW, Akay LA, Davila-Velderrain J, von Maydell D, Mathys H, Davidson SM, Effenberger A, Chen C-Y, Maner-Smith K, Hajjar I, Ortlund EA, Bula M, Agbas E, Ng A, Jiang X, Kahn M, Blanco-Duque C, Lavoie N, Liu L, Reyes R, Lin Y-T, Ko T, R’Bibo L, Ralvenius WT, Bennett DA, Cam HP, Kellis M, Tsai L-H (2022) APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 611:769–779. https://doi.org/10.1038/s41586-022-05439-w
doi: 10.1038/s41586-022-05439-w
pubmed: 36385529
pmcid: 9870060
William Rebeck G, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11:575–580. https://doi.org/10.1016/0896-6273(93)90070-8
doi: 10.1016/0896-6273(93)90070-8
Carter DB (2005) The Interaction of Amyloid-β with ApoE: The form of beta amyloid is a partial determinant of the interaction with Apolipoprotein E. In: Harris JR, Fahrenholz F (eds) Alzheimer’s Disease. Springer, Boston, pp 255–272
doi: 10.1007/0-387-23226-5_13
Balu D, Karstens AJ, Loukenas E, Maldonado Weng J, York JM, Valencia-Olvera AC, LaDu MJ (2019) The role of APOE in transgenic mouse models of AD. Neurosci Lett 707:134285. https://doi.org/10.1016/j.neulet.2019.134285
doi: 10.1016/j.neulet.2019.134285
pubmed: 31150730
pmcid: 6717006
Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 97:2892–2897. https://doi.org/10.1073/pnas.050004797
doi: 10.1073/pnas.050004797
pubmed: 10694577
pmcid: 16026
Liu C-C, Zhao N, Fu Y, Wang N, Linares C, Tsai C-W, Bu G (2017) ApoE4 accelerates early seeding of amyloid pathologY. Neuron 96:1024-1032.e3. https://doi.org/10.1016/j.neuron.2017.11.013
doi: 10.1016/j.neuron.2017.11.013
pubmed: 29216449
pmcid: 5948105
Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N, Valencia-Olvera AC, LaDu MJ (2017) EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimerʼns disease. J Lipid Res 58:1733–1755. https://doi.org/10.1194/jlr.R076315
doi: 10.1194/jlr.R076315
pubmed: 28389477
pmcid: 5580905
Wood SJ, Chan W, Wetzel R (1996) An ApoE-Aβ inhibition complex in Aβ fibril extension. Chem Biol 3:949–956. https://doi.org/10.1016/S1074-5521(96)90183-0
doi: 10.1016/S1074-5521(96)90183-0
pubmed: 8939715
Endo Y, Hasegawa K, Nomura R, Arishima H, Kikuta K, Yamashita T, Inoue Y, Ueda M, Ando Y, Wilson MR, Hamano T, Nakamoto Y, Naiki H (2019) Apolipoprotein E and clusterin inhibit the early phase of amyloid-β aggregation in an in vitro model of cerebral amyloid angiopathy. Acta Neuropathol Commun 7:12. https://doi.org/10.1186/s40478-019-0662-1
doi: 10.1186/s40478-019-0662-1
pubmed: 30691533
pmcid: 6348632
Aleshkov S, Abraham CR, Zannis VI (1997) Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide β (1–40). Relevance to Alzheimer’s disease. Biochemistry 36:10571–10580. https://doi.org/10.1021/bi9626362
doi: 10.1021/bi9626362
pubmed: 9265639
Garai K, Verghese PB, Baban B, Holtzman DM, Frieden C (2014) The binding of apolipoprotein E to oligomers and fibrils of amyloid-β alters the kinetics of amyloid aggregation. Biochemistry 53:6323–6331. https://doi.org/10.1021/bi5008172
doi: 10.1021/bi5008172
pubmed: 25207746
Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A (2022) Endogenous human proteins interfering with amyloid formation. Biomolecules 12:446. https://doi.org/10.3390/biom12030446
doi: 10.3390/biom12030446
pubmed: 35327638
pmcid: 8946693
Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993) Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci 90:8098–8102. https://doi.org/10.1073/pnas.90.17.8098
doi: 10.1073/pnas.90.17.8098
pubmed: 8367470
pmcid: 47295
Wisniewski T, Castaño EM, Golabek A, Vogel T, Frangione B (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 145:1030–1035
pubmed: 7977635
pmcid: 1887417
Naiki H, Gejyo F, Nakakuki K (1997) Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer’s β-amyloid fibril formation in Vitro. Biochemistry 36:6243–6250. https://doi.org/10.1021/bi9624705
doi: 10.1021/bi9624705
pubmed: 9166797
Hori Y, Hashimoto T, Nomoto H, Hyman BT, Iwatsubo T (2015) Role of apolipoprotein E in β-amyloidogenesis. J Biol Chem 290:15163–15174. https://doi.org/10.1074/jbc.M114.622209
doi: 10.1074/jbc.M114.622209
pubmed: 25918154
pmcid: 4463458
Evans KC, Berger EP, Cho CG, Weisgraber KH, Lansbury PT (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci 92:763–767. https://doi.org/10.1073/pnas.92.3.763
doi: 10.1073/pnas.92.3.763
pubmed: 7846048
pmcid: 42700
Islam T, Gharibyan AL, Golchin SA, Pettersson N, Brännström K, Hedberg I, Virta M, Olofsson L, Olofsson A (2020) Apolipoprotein E impairs amyloid-β fibril elongation and maturation. FEBS J 287:1208–1219. https://doi.org/10.1111/febs.15075
doi: 10.1111/febs.15075
pubmed: 31571352
Sahoo BR, Bekier ME, Liu Z, Kocman V, Stoddard AK, Anantharamaiah GM, Nowick J, Fierke CA, Wang Y, Ramamoorthy A (2020) Structural interaction of apolipoprotein A-I mimetic peptide with amyloid-β generates toxic hetero-oligomers. J Mol Biol 432:1020–1034. https://doi.org/10.1016/j.jmb.2019.12.005
doi: 10.1016/j.jmb.2019.12.005
pubmed: 31866295
Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A, Schmidt M, Sigurdson CJ, Jucker M, Fändrich M (2019) Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat Commun 10:4760. https://doi.org/10.1038/s41467-019-12683-8
doi: 10.1038/s41467-019-12683-8
pubmed: 31664019
pmcid: 6820800
Lu J-X, Qiang W, Yau W-M, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268. https://doi.org/10.1016/j.cell.2013.08.035
doi: 10.1016/j.cell.2013.08.035
pubmed: 24034249
Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS (2008) Structure and dynamics of human apolipoprotein CIII. J Biol Chem 283:17416–17427. https://doi.org/10.1074/jbc.M800756200
doi: 10.1074/jbc.M800756200
pubmed: 18408013
Shih Y-H, Tsai K-J, Lee C-W, Shiesh S-C, Chen W-T, Pai M-C, Kuo Y-M (2014) Apolipoprotein C-III is an amyloid-β-binding protein and an early marker for Alzheimer’s disease. J Alzheimers Dis 41:855–865. https://doi.org/10.3233/JAD-140111
doi: 10.3233/JAD-140111
pubmed: 24685634
Wang Q, Zhou W, Zhang J (2019) Higher apolipoprotein C-III levels in cerebrospinal fluid are associated with slower cognitive decline in mild cognitive impairment. J Alzheimers Dis 67:961–969. https://doi.org/10.3233/JAD-181096
doi: 10.3233/JAD-181096
pubmed: 30689582
Nolte RT, Atkinson D (1992) Conformational analysis of apolipoprotein A-I and E-3 based on primary sequence and circular dichroism. Biophys J 63:1221–1239. https://doi.org/10.1016/S0006-3495(92)81698-3
doi: 10.1016/S0006-3495(92)81698-3
pubmed: 1477274
pmcid: 1261425
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12:255–278. https://doi.org/10.1038/nprot.2016.169
doi: 10.1038/nprot.2016.169
pubmed: 28079879
pmcid: 5540229
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. https://doi.org/10.1107/S0907444904019158
doi: 10.1107/S0907444904019158
pubmed: 15572765
Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kalé LV, Schulten K, Chipot C, Tajkhorshid E (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130. https://doi.org/10.1063/5.0014475
doi: 10.1063/5.0014475
pubmed: 32752662
pmcid: 7395834
Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5
doi: 10.1016/0263-7855(96)00018-5
pubmed: 8744570
Beglov D, Hall DR, Wakefield AE, Luo L, Allen KN, Kozakov D, Whitty A, Vajda S (2018) Exploring the structural origins of cryptic sites on proteins. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1711490115
doi: 10.1073/pnas.1711490115
pubmed: 29581267
pmcid: 5899430
Tamamizu-Kato S, Cohen JK, Drake CB, Kosaraju MG, Drury J, Narayanaswami V (2008) Interaction with amyloid β peptide compromises the lipid binding function of apolipoprotein E. Biochemistry 47:5225–5234. https://doi.org/10.1021/bi702097s
doi: 10.1021/bi702097s
pubmed: 18407659
Peters-Libeu CA, Newhouse Y, Hatters DM, Weisgraber KH (2006) Model of biologically active apolipoprotein E bound to dipalmitoylphosphatidylcholine. J Biol Chem 281:1073–1079. https://doi.org/10.1074/jbc.M510851200
doi: 10.1074/jbc.M510851200
pubmed: 16278220
Baumann MH, Kallijärvi J, Lankinen H, Soto C, Haltia M (2000) Apolipoprotein E includes a binding site which is recognized by several amyloidogenic polypeptides. Biochem J 349:77–84. https://doi.org/10.1042/bj3490077
doi: 10.1042/bj3490077
pubmed: 10861213
pmcid: 1221122
Willander H, Askarieh G, Landreh M, Westermark P, Nordling K, Keränen H, Hermansson E, Hamvas A, Nogee LM, Bergman T, Saenz A, Casals C, Åqvist J, Jörnvall H, Berglund H, Presto J, Knight SD, Johansson J (2012) High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein C. Proc Natl Acad Sci 109:2325–2329. https://doi.org/10.1073/pnas.1114740109
doi: 10.1073/pnas.1114740109
pubmed: 22308375
pmcid: 3289314
Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstål H, Dolfe L, Dunning C, Yang X, Frohm B, Vendruscolo M, Johansson J, Dobson CM, Fisahn A, Knowles TPJ, Linse S (2015) A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat Struct Mol Biol 22:207–213. https://doi.org/10.1038/nsmb.2971
doi: 10.1038/nsmb.2971
pubmed: 25686087
pmcid: 4595974
Törnquist M, Cukalevski R, Weininger U, Meisl G, Knowles TPJ, Leiding T, Malmendal A, Akke M, Linse S (2020) Ultrastructural evidence for self-replication of Alzheimer-associated Aβ42 amyloid along the sides of fibrils. Proc Natl Acad Sci 117:11265–11273. https://doi.org/10.1073/pnas.1918481117
doi: 10.1073/pnas.1918481117
pubmed: 32439711
pmcid: 7260961
Gursky O (2005) Apolipoprotein structure and dynamics. Curr Opin Lipidol 16:287–294. https://doi.org/10.1097/01.mol.0000169348.61191.ac
doi: 10.1097/01.mol.0000169348.61191.ac
pubmed: 15891389
Bussell R, Eliezer D (2003) A structural and functional role for 11-mer repeats in α-Synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778. https://doi.org/10.1016/S0022-2836(03)00520-5
doi: 10.1016/S0022-2836(03)00520-5
pubmed: 12787676
Saio T, Guan X, Rossi P, Economou A, Kalodimos CG (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1250494. https://doi.org/10.1126/science.1250494
doi: 10.1126/science.1250494
pubmed: 24812405
pmcid: 4070327
Fu Y, Zhao J, Atagi Y, Nielsen HM, Liu C-C, Zheng H, Shinohara M, Kanekiyo T, Bu G (2016) Apolipoprotein E lipoprotein particles inhibit amyloid-β uptake through cell surface heparan sulphate proteoglycan. Mol Neurodegener 11:37. https://doi.org/10.1186/s13024-016-0099-y
doi: 10.1186/s13024-016-0099-y
pubmed: 27151330
pmcid: 4857252
DeToma AS, Salamekh S, Ramamoorthy A, Lim MH (2012) Misfolded proteins in Alzheimer’s disease and type II diabetes. Chem Soc Rev 41:608–621. https://doi.org/10.1039/c1cs15112f
doi: 10.1039/c1cs15112f
pubmed: 21818468
Zhang Y, Gao H, Zheng W, Xu H (2022) Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer’s disease. Neurobiol Dis 172:105824. https://doi.org/10.1016/j.nbd.2022.105824
doi: 10.1016/j.nbd.2022.105824
pubmed: 35878744
Wallin C, Jarvet J, Biverstål H, Wärmländer S, Danielsson J, Gräslund A, Abelein A (2020) Metal ion coordination delays amyloid-β peptide self-assembly by forming an aggregation-inert complex. J Biol Chem 295:7224–7234. https://doi.org/10.1074/jbc.RA120.012738
doi: 10.1074/jbc.RA120.012738
pubmed: 32241918
pmcid: 7247290
Parhizkar S, Holtzman DM (2022) APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Semin Immunol 59:101594. https://doi.org/10.1016/j.smim.2022.101594
doi: 10.1016/j.smim.2022.101594
pubmed: 35232622
pmcid: 9411266
Huynh T-PV, Davis AA, Ulrich JD, Holtzman DM (2017) Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J Lipid Res 58:824–836. https://doi.org/10.1194/jlr.R075481
doi: 10.1194/jlr.R075481
pubmed: 28246336
pmcid: 5408619
Ramamoorthy A, Lim MH (2013) Structural characterization and inhibition of toxic amyloid-β oligomeric intermediates. Biophys J 105:287–288. https://doi.org/10.1016/j.bpj.2013.05.004
doi: 10.1016/j.bpj.2013.05.004
pubmed: 23870249
pmcid: 3714932
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea J-E, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P (2021) Amyloid oligomers: a joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, Type II diabetes, and amyotrophic lateral sclerosis. Chem Rev 121:2545–2647. https://doi.org/10.1021/acs.chemrev.0c01122
doi: 10.1021/acs.chemrev.0c01122
pubmed: 33543942
pmcid: 8836097