Morphological diversity of actinobacteria isolated from oil palm compost (Elaeis guineensis).
Actinobacteria
Composting
Secondary metabolites
Journal
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]
ISSN: 1678-4405
Titre abrégé: Braz J Microbiol
Pays: Brazil
ID NLM: 101095924
Informations de publication
Date de publication:
27 Nov 2023
27 Nov 2023
Historique:
received:
28
05
2023
accepted:
07
11
2023
medline:
27
11
2023
pubmed:
27
11
2023
entrez:
27
11
2023
Statut:
aheadofprint
Résumé
Composting is a natural process of decomposition of organic matter that occurs by the action of microorganisms such as fungi, bacteria, and actinobacteria. The actinobacteria are present throughout the process due to their resistance to different environmental conditions. They are Gram-positive, filamentous bacteria with a high capacity for producing secondary metabolites of biotechnological importance. Thus, the objective of this work was to isolate and characterize actinobacteria from industrial composting soil of oil palm (Elaeis guineensis) in the municipality of Igarapé-Açu, Pará. Ten samples of the material were collected and seeded on soy tryptone agar, Reasoner's 2A agar, and Columbia agar, using the serial dilution technique. For morphological characterization of the strains, Gram staining and microculture were performed, and for biochemical characterization, the motility, triple sugar iron, Simmons citrate, maltose, phenylalanine, catalase, and DNAse tests were performed. It was observed that compost actinobacteria have a great diversity in morphological and metabolic production, which may be associated with the substrate and cultivation conditions. Therefore, palm oil compost material represents a rich source of bacterial biodiversity, bringing new perspectives for the bioprospecting of actinobacteria of biotechnological importance in little explored environments.
Identifiants
pubmed: 38010583
doi: 10.1007/s42770-023-01178-w
pii: 10.1007/s42770-023-01178-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.
Références
Zainudin MHM, Singam JT, Sazili AQ, Shirai Y, Hassan MA (2022) Indigenous cellulolytic aerobic and facultative anaerobic bacterial community enhanced the composting of rice straw and chicken manure with biochar addition. Sci Rep 12(1):5930. https://doi.org/10.1038/s41598-022-09789-3
doi: 10.1038/s41598-022-09789-3
pubmed: 35396465
pmcid: 8993872
Aguilar-Paredes A, Valdés G, Araneda N, Valdebenito E, Hansen F, Nuti M (2023) Microbial community in the composting process and its positive impact on the soil biota in sustainable agriculture. Agronomy 13(2):542. https://doi.org/10.3390/agronomy13020542
doi: 10.3390/agronomy13020542
Shi F, Yu H, Zhang N, Wang Su, Li P, Yu Q et al (2021) Microbial succession of lignocellulose degrading bacteria during composting of corn stalk. Bioengineered 12(2):12372–12382. https://doi.org/10.1080/21655979.2021.2002622
doi: 10.1080/21655979.2021.2002622
pubmed: 34747301
pmcid: 8809999
Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O (2020) Waste management through composting: challenges and potentials. Sustainability 12(11):4456. https://doi.org/10.3390/su12114456
doi: 10.3390/su12114456
Lin C, Cheruiyot NK, Bui XT, Ngo HH (2022) Composting and its application in bioremediation of organic contaminants. Bioengineered 13(1):1073–1089. https://doi.org/10.1080/21655979.2021.2017624
doi: 10.1080/21655979.2021.2017624
pubmed: 35001798
pmcid: 8805880
Biyada S, Merzouki M, Dėmčėnko T et al (2021) Microbial community dynamics in the mesophilic and thermophilic phases of textile waste composting identified through next-generation sequencing. Sci Rep 11:23624. https://doi.org/10.1038/s41598-021-03191-1
doi: 10.1038/s41598-021-03191-1
pubmed: 34880393
pmcid: 8654937
Finore I, Feola A, Russo L et al (2023) Thermophilic bacteria and their thermozymes in composting processes: a review. Chem Biol Technol Agric 10:7. https://doi.org/10.1186/s40538-023-00381-z
doi: 10.1186/s40538-023-00381-z
Moreno J, López-González JA, Arcos-Nievas MA, Suárez-Estrella F, Jurado MM, Estrella-González MJ, López MJ (2021) Revisiting the succession of microbial populations throughout composting: a matter of thermotolerance. Sci Total Environ 773:145587. https://doi.org/10.1016/j.scitotenv.2021.145587
doi: 10.1016/j.scitotenv.2021.145587
pubmed: 33592470
Al-shaibani MM, Radin Mohamed RMS, Sidik NM, Enshasy HAE, Al-Gheethi A, Noman E, Al-Mekhlafi NA, Zin NM (2021) Biodiversity of secondary metabolites compounds isolated from phylum actinobacteria and its therapeutic applications. Molecules 26(15):4504. https://doi.org/10.3390/molecules26154504
doi: 10.3390/molecules26154504
pubmed: 34361657
pmcid: 8347454
Barka EA, Vatsa P, Sanchez L et al (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43. https://doi.org/10.1128/MMBR.00019-15
doi: 10.1128/MMBR.00019-15
pubmed: 26609051
Bao Y, Dolfing J, Guo Z, Chen R, Wu M, Li Z, Lin X, Feng Y (2021) Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome 9(1):84. https://doi.org/10.1186/s40168-021-01032-x
doi: 10.1186/s40168-021-01032-x
pubmed: 33827695
pmcid: 8028251
Naligama KN, Weerasinghe KE, Halmillawewa AP (2022) Characterization of bioactive Actinomycetes isolated from Kadolkele Mangrove Sediments, Sri Lanka. Pol J Microbiol 71(2):191–204. https://doi.org/10.33073/pjm-2022-017
doi: 10.33073/pjm-2022-017
pubmed: 35676828
pmcid: 9252147
Messaoudi O, Wink J, Bendahou M (2020) Diversity of Actinobacteria isolated from date palms rhizosphere and saline environments: isolation, identification and biological activity evaluation. Microorganisms 8(12):1853. https://doi.org/10.3390/microorganisms8121853
doi: 10.3390/microorganisms8121853
pubmed: 33255541
pmcid: 7760371
Sharma M, Dangi P, Choudhary M (2014) Actinomycetes: Source, identification, and their applications. Int J Curr Microbiol Appl Sci 3:801–832. https://www.ijcmas.com/vol-3-2/Mukesh%20Sharma.pdf . Accessed 18 Mar 2023
Zahr R, Zahr S, Hajj RE, Khalil M (2022) Actinomycetes, promising therapeutic agents: characteristics and active metabolites. J Biol Todays World 11(6):1–8. Retrieved from: https://www.iomcworld.org/articles/actinomycetes-promising-therapeutic-agents-characteristics-and-active-metabolites.pdf . Accessed 10 May 2023
Neto JM, Bandeira L, Mesquita A, Martins SC, Martins C (2022) biotechnological Potential and enzymes produced by actinobacteria from semi-arid soils. Enciclopedia Biosfera 19(42). https://www.conhecer.org.br/ojs/index.php/biosfera/article/view/5557 . Accessed 10 May 2023
Tran T, Dawrs SN, Norton GJ, Virdi R, Honda JR (2020) Brought to you courtesy of the red, white, and blue pigments of nontuberculous mycobacteria. AIMS Microbiol 6(4):434–450. https://doi.org/10.3934/microbiol.2020026
doi: 10.3934/microbiol.2020026
pubmed: 33364537
pmcid: 7755587
Martins HHS, Caldas DS, Prazeres MCC, Colares TV, Silva JCC, Fernandes CF, Pereira ES, Del-Castillo JCS, Coelho BBF, Bezerra NV (2022) Chromogenic diversity of actinobacteria strains isolated from mangrove soils in the municipality of São Caetano de Odivelas – Pará, Brazil. Int J Dev Res 12(12):60689–60693. https://www.journalijdr.com/sites/default/files/issue-pdf/25867.pdf . Accessed 10 May 2023
Hemeda NA, Hegazy GE, Abdelgalil SA, Soliman NA, Abdel-Meguid DI, El-Assar SA (2022) Maximization of red pigment production from Streptomyces sp. LS1 structure elucidation and application as antimicrobial/antifouling against human pathogens and marinlucidatees. J Genet Eng Biotechnol 20(1):1–17. https://doi.org/10.1186/s43141-022-00452-y
doi: 10.1186/s43141-022-00452-y
Orlandi VT, Martegani E, Giaroni C, Baj A, Bolognese F (2022) Bacterial pigments: a colorful palette reservoir for biotechnological applications. Biotechnol Appl Biochem 69(3):981–1001. https://doi.org/10.1002/bab.2170
doi: 10.1002/bab.2170
pubmed: 33870552
Silva GR (2013) Bioprospecção de actinobactérias isoladas da rizosfera de Caesalpinia pyramidalis Tul. do bioma Caatinga. Dissertação, Universidade Federal de Pernambuco. https://repositorio.ufpe.br/handle/123456789/13351 . Accessed 30 Dec 2022
Magron CF (2014) Isolamento, identificação e caracterização de bactérias cultiváveis presentes na compostagem de resíduos orgânicos do zoológico de São Paulo e produtoras de amilases e proteases. Dissertação, Universidade Federal de São Paulo. https://repositorio.unifesp.br/handle/11600/46518 . Accessed 30 Dec 2022
Augustine D, Jacob JC, Ramya K, Philip R (2013) Actinobacteria from sediment samples of Arabian Sea and Bay of Bengal: biochemical and physiological characterization. Int J Res Mar Sci 2(2):56–63
Silva MJS, Sousa JB, Martins SCS, Martins CM (2019) Diversidade de cepas de actinobactérias da RPPN “Fazenda Não me Deixes” - QUIXADÁ (CE). Enciclopédia Biosfera 16(29):1857–1869. https://conhecer.org.br/ojs/index.php/biosfera/article/view/312 . Accessed 2 Oct 2022
Bezerra NV, Silva JCC, Uesugi JHE, Fernandes CF, Prazeres MCC, Caldas DS, Pismel JAR, Martins HHS, Júnior JSG (2021) Characterization and evaluation of the antibacterial potential of bacterial microbiota of cultivated soils of Cassava (Manihot esculenta) and Black pepper (Piper nigrum) in the city of Igarapé Açu – Pará, Brazil. Int J Environ Agric Biotechnol 6(6):106–110. https://doi.org/10.22161/ijeab.66.12
doi: 10.22161/ijeab.66.12
ANVISA (2013) Agência Nacional de Vigilância Sanitária. Microbiologia clínica para o controle de infecção relacionada à assistência à saúde. Módulo 4: Procedimentos Laboratoriais: da Requisição do Exame à Análise Microbiológica e Laudo Final. https://www.saude.go.gov.br/images/imagens_migradas/upload/arquivos/2017-02/modulo-4---procedimentos-laboratoriais---da-requisicao-do-exame-a-analise-microbiologica-e-laudo-final.pdf . Accessed 2 Oct 2022
Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 16:313–340
McFarland J (1907) Nephelometer: an instrument for media used for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J Am Med Assoc 49:1176–1178. https://doi.org/10.1001/jama.1907.25320140022001f
doi: 10.1001/jama.1907.25320140022001f
Silva WO (2017) Otimização e caracterização parcial de L-asparaginase e L-glutaminase de actinobactéria da rizosfera de Poincianela pyramidalis. Dissertação, Universidade Federal de Pernambuco. https://repositorio.ufpe.br/handle/123456789/30485 . Accessed 20 Jan 2023
Goodfellow M, Kampfer P, Busse H, Trujillo ME, Suzuki KI, Whitman WB (2012) Manual® Bergey’s systematic bacteriology: volume five: Actinobacteria, Part One. Springer, New York
Santos LS, de Souza GS, da Silva LG, de Araújo LR, da Silva MMR, Lopes EAP (2021) Actinobactérias com potencial biotecnológico agrícola isoladas de adubo orgânico fermentado (Bokashi). Diversitas J 6(4):3866–3881. https://doi.org/10.48017/dj.v6i4.1946
doi: 10.48017/dj.v6i4.1946
Reasoner DJ, Geldreich E (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49(1):1–7. https://doi.org/10.1128/aem.49.1.1-7.1985
doi: 10.1128/aem.49.1.1-7.1985
pubmed: 3883894
pmcid: 238333
Almódovar AAB, Pereira TC, Bugno A (2009) Eficiência do Agar R2A na contagem de bactérias heterotróficas em água tratada para diálise. Rev Inst Adolfo Lutz 68(2):232–236. https://doi.org/10.53393/rial.2009.v68.32722
doi: 10.53393/rial.2009.v68.32722
de Raad M, Li Y, Andeer P, Kosina SM, Saichek NR, Golini A et al (2021) A defined medium based on R2A for cultivation and exometabolite profiling of soil bacteria. bioRxiv 2021–05. https://doi.org/10.1101/2021.05.23.445362
Hilinski EG (2019) Utilização de método microbiológico rápido para a enumeração de bactérias heterotróficas em água tratada para diálise: técnica de detecção microbiana pelo uso de fluorescência. Dissertação, Universidade de São Paulo. https://www.teses.usp.br/teses/disponiveis/9/9139/tde-26082019-114646/pt-br.php . Accessed 22 Jan 2023
Park SH, Lee YH, Yeo MH, Lee HR, Kim HS, Chang KS (2021) Comparison of microbial detection of hemodialysis water in Reasoner’s 2A Agar (R2A) and Trypticase Soy Agar (TSA). J Bacteriol Virol 51(2):79–88. https://doi.org/10.4167/jbv.2021.51.2.79
doi: 10.4167/jbv.2021.51.2.79
Nishioka T, Elsharkawy MM, Suga H, Kageyama K, Hyakumachi M, Shimizu M (2016) Development of culture medium for the isolation of Flavobacterium and Chryseobacterium from rhizosphere soil. Microbes Environ 31(2):104–110. https://doi.org/10.1264/jsme2.ME15144
doi: 10.1264/jsme2.ME15144
pubmed: 27098502
pmcid: 4912144
Ayuningrum D, Jati O (2021) Screening of actinobacteria-producing amylolytic enzyme in sediment from Litopenaeus vannamei (Boone, 1931) ponds in Rembang District, Central Java, Indonesia. Biodiversitas J Biol Divers 22(4). https://doi.org/10.13057/biodiv/d220427
Feng L, Li X, Zhen X, Dong H, Zheng J, Wang Y (2019) Study of enzyme activity changing pattern in livestock manures composting. Appl Ecol Environ Res 17:6581–93. https://doi.org/10.15666/aeer/1703_65816593
doi: 10.15666/aeer/1703_65816593
Silva V, Lima JV, Gondim P, Martins C, Martins SC (2015) EFEITO DA IRRIGAÇÃO E DO TIPO DE CULTIVO SOBRE A RIQUEZA E DIVERSIDADE CROMOGÊNICA DE ACTINOBACTÉRIAS DO SOLO DE UMA REGIÃO DO SEMIÁRIDO DO CEARÁ. Enciclopédia Biosfera 11(22). https://www.conhecer.org.br/ojs/index.php/biosfera/article/view/1664 . Accessed 30 Jan 2023
Chadni Z, Rahaman MH, Jerin I, Hoque KMF, Reza MA (2017) Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology 8(1):48–57. https://doi.org/10.1080/21501203.2017.1302013
doi: 10.1080/21501203.2017.1302013
Panwar AS, Molpa D, Joshi GK (2019) Biotechnological potential of some cold-adapted bacteria isolated from North-Western Himalaya. Microbiology 88:343–352. https://doi.org/10.1134/S002626171903007X
doi: 10.1134/S002626171903007X
Seipke RF (2015) Strain-level diversity of secondary metabolism in Streptomyces albus. PLoS ONE 10(1):e0116457. https://doi.org/10.1371/journal.pone.0116457
doi: 10.1371/journal.pone.0116457
pubmed: 25635820
pmcid: 4312078
Salim FM, Sharmili SA, Anbumalarmathi J, Umamaheswari K (2017) Isolation, molecular characterization and identification of antibiotic producing actinomycetes from soil samples. J Appl Pharm Sci 7(9):069–075. https://doi.org/10.7324/JAPS.2017.70909
doi: 10.7324/JAPS.2017.70909
Selim MSM, Abdelhamid SA, Mohamed SS (2021) Secondary metabolites and biodiversity of actinomycetes. J Genet Eng Biotechnol 19(1):72. https://doi.org/10.1186/s43141-021-00156-9
doi: 10.1186/s43141-021-00156-9
pubmed: 33982192
pmcid: 8116480
Charousová I, Medo J, Hleba L, Císarová M, Javoreková S (2019) Antimicrobial activity of actinomycetes and characterization of actinomycin-producing strain KRG-1 isolated from Karoo, South Africa. Braz J Pharm Sci 55. https://doi.org/10.1590/s2175-97902019000217249
Oliveira MPD (2020) Caracterização cultural e micromorfológica de actinobactérias do semiárido nordestino em diferentes níveis de cobertura vegetal. Monografia, Universidade Federal do Ceará. http://www.repositorio.ufc.br/handle/riufc/56882 . Accessed 11 Feb 2023
Tiwari D, Bhati P, Das P, Shouche S (2018) Potential of actinomycetes as bioremediating and biocontrolling agents. Int J Biomed Eng 3(2):25–37. https://doi.org/10.36106/paripex
Anandan R, Dharumadurai D, Manogaran GP (2016) An introduction to actinobacteria. In Actinobacteria-basics and biotechnological applications. IntechOpen. https://doi.org/10.5772/62329
Farda B, Djebaili R, Vaccarelli I, Del Gallo M, Pellegrini M (2022) Actinomycetes from caves: an overview of their diversity, biotechnological properties, and insights for their use in soil environments. Microorganisms 10(2):453. https://doi.org/10.3390/microorganisms10020453
doi: 10.3390/microorganisms10020453
pubmed: 35208907
pmcid: 8875103
Kurtböke Dİ (2022) Correct interpretation of actinomycete imagery using scanning electron microscopy. Microbiol Aust 43(1):28–31. https://doi.org/10.1071/MA22009
doi: 10.1071/MA22009
Fatima A, Aftab U, Shaaban KA, Thorson JS, Sajid I (2019) Spore forming Actinobacterial diversity of Cholistan Desert Pakistan: Polyphasic taxonomy, antimicrobial potential and chemical profiling. BMC Microbiol 19(1):1–17. https://doi.org/10.1186/s12866-019-1414-x
doi: 10.1186/s12866-019-1414-x
Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2016) Microbiologia de Brock. 14 Ed. Porto Alegre: Artmed; 2016
Dornelas JCM, Figueiredo JEF, de Abreu CS, Lana UGP, Oliveira-Paiva CA, Marriel I E (2017) Characterization and phylogenetic affiliation of Actinobacteria from tropical soils with potential uses for agro-industrial processes. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1076062 . Accessed 3 Mar 2023
Sukmawaty E, Sari SR, Masri M (2020) Characterization of soil Actinomycetes from Malino pine forest rhizosphere of South Sulawesi. Elkawnie: J Islam Sci Technol 6(2):315–328. https://doi.org/10.22373/ekw.v6i2.5383
doi: 10.22373/ekw.v6i2.5383
Nurkanto A, Agusta A (2015) Molecular identification and morpho-physiological characterization of Actinomycetes with antimicrobial properties. J Biologi Indones 11(2):195–203
Fitri L, Bessania MA, Septi N, Suhartono S (2021) Isolation and characterization of soil actinobacteria as cellulolytic enzyme producer from Aceh Besar, Indonesia. Biodiversitas J Biol Divers 22(11). https://doi.org/10.13057/biodiv/d221155
Yun BR, Roh SG, Kim SB (2017) Diversity and physiological properties of soil actinobacteria in Ulleung Island. Korean J Microbiol 53(4):242–250. https://doi.org/10.7845/kjm.2017.7057
doi: 10.7845/kjm.2017.7057
Janardhan A, Kumar AP, Viswanath B, Saigopal DVR, Narasimha G (2014) Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnol Res Int 2014. https://doi.org/10.1155/2014/217030
Yanti AH, Setyawati TR, Kurniatuhadi R (2020) Composition and Characterization of actinomycetes isolated from Nipah mangrove sediment, gastrointestinal and fecal pellets of Nipah worm (Namalycastis Rhodhocorde). In IOP Conference Series: Earth and Environmental Science (Vol. 550, No. 1, p. 012003). IOP Publishing. https://doi.org/10.1088/1755-1315/550/1/012003
Chaudhary HS, Yadav J, Shrivastava AR, Singh S, Singh AK, Gopalan N (2013) Antibacterial activity of actinomycetes isolated from different soil samples of Sheopur (A city of central India). J Adv Pharm Technol Res 4(2):118. https://doi.org/10.4103/2231-4040.111528
doi: 10.4103/2231-4040.111528
pubmed: 23833752
pmcid: 3696223
Muok AR, Claessen D, Briegel A (2021) Microbial hitchhiking: how Streptomyces spores are transported by motile soil bacteria. ISME J 15(9):2591–2600. https://doi.org/10.1038/s41396-021-00952-8
doi: 10.1038/s41396-021-00952-8
pubmed: 33723381
pmcid: 8397704
Traxler MF, Rozen DE (2022) Ecological drivers of division of labour in Streptomyces. Curr Opin Microbiol 67:102148. https://doi.org/10.1016/j.mib.2022.102148
doi: 10.1016/j.mib.2022.102148
pubmed: 35468363
Pathalam G, Rajendran HAD, Appadurai DR, Gandhi MR, Michael GP, Savarimuthu I, Naif AAD (2017) Isolation and molecular characterization of actinomycetes with antimicrobial and mosquito larvicidal properties. Beni-Suef Univ J Basic Appl Sci 6(2):209–217. https://doi.org/10.1016/j.bjbas.2017.04.002
doi: 10.1016/j.bjbas.2017.04.002
Kalyani BS, Krishna PS, Sreenivasulu K (2019) Screening and identification of novel isolate Streptomyces sp., NLKPB45 from Nellore costal region for its biomedical applications. Saudi J Biol Sci 26(7):1655–1660. https://doi.org/10.1016/j.sjbs.2018.08.027
doi: 10.1016/j.sjbs.2018.08.027
pubmed: 31762640
Lima SM, Melo JG, Militão GC, Lima GM, Aguiar JS, Araújo RM, Braz-Filho R, Marchand P, Araújo JM, Silva TG (2017) Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Appl Microbiol Biotechnol 101:711–723. https://doi.org/10.1007/s00253-016-7886-9
doi: 10.1007/s00253-016-7886-9
pubmed: 27757508
Díaz-Díaz M, Bernal-Cabrera A, Trapero A, Medina-Marrero R, Sifontes-Rodríguez S, Cupull-Santana RD, García-Bernal M et al (2022) Characterization of actinobacterial strains as potential biocontrol agents against Macrophomina phaseolina and Rhizoctonia solani, the main soil-borne pathogens of Phaseolus vulgaris in Cuba. Plants 11(5):645. https://doi.org/10.3390/plants11050645 . MDPI AG
doi: 10.3390/plants11050645
pubmed: 35270115
pmcid: 8912743
Almuhayawi M, Mohamed M, Abdel-Mawgoud M, Selim S, Al Jaouni S, AbdElgawad H (2021) Bioactive potential of several actinobacteria isolated from microbiologically barely explored desert habitat, Saudi Arabia. Biology 10(3):235. https://doi.org/10.3390/biology10030235 . MDPI AG
doi: 10.3390/biology10030235
pubmed: 33808594
pmcid: 8003550
Abdelrazek SA, Elkony HM (2019) Utilization of oxygen quantity as a compost quality indicator. Zagazig J Agric Res 46(2):391–401. https://doi.org/10.21608/zjar.2019.33395
doi: 10.21608/zjar.2019.33395
Beites T, Pires SD, Santos CL, Osorio H, Moradas-Ferreira P, Mendes MV (2011) Crosstalk between ROS homeostasis and secondary metabolism in S. natalensis ATCC 27448: modulation of pimaricin production by intracellular ROS. PLoS One 6(11):e27472. https://doi.org/10.1371/journal.pone.0027472
doi: 10.1371/journal.pone.0027472
pubmed: 22114674
pmcid: 3219662
Kim SY, Park C, Jang HJ, Kim BO et al (2019) Antibacterial strategies inspired by the oxidative stress and response networks. J Microbiol 57:203–212. https://doi.org/10.1007/s12275-019-8711-9
doi: 10.1007/s12275-019-8711-9
pubmed: 30806977
Yuan F, Yin S, Xu Y, Xiang L et al (2021) The richness and diversity of catalases in bacteria. Front Microbiol 12:645477. https://doi.org/10.3389/fmicb.2021.645477
doi: 10.3389/fmicb.2021.645477
pubmed: 33815333
pmcid: 8017148
Kizhakedathil MP, Chandrasekaran SD (2018) Screening for extracellular enzymes from actinomycetes isolated from agricultural soils of Kolathur, Tamil Nadu, India. Curr Bioact Compd 14(4):387–396. https://doi.org/10.2174/1573407213666170615112449
doi: 10.2174/1573407213666170615112449
Kamino LN, Gulden RH (2021) The effect of crop species on DNase-producing bacteria in two soils. Ann Microbiol 71:1–18. https://doi.org/10.1186/s13213-021-01624-w
doi: 10.1186/s13213-021-01624-w
Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM, Long RD, Bailey JR, Parnell MJ, Hoe NP, Adams GG, Deleo FR, Musser JM (2005) Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci 102(5):1679–1684. https://doi.org/10.1073/pnas.040664110
doi: 10.1073/pnas.040664110
pubmed: 15668390
pmcid: 547841