Ultrasound-assisted deep eutectic solvent extraction of bioactive compounds from persimmon calyx.

deep eutectic solvent diospyros kaki extraction optimization ultrasonication

Journal

Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052

Informations de publication

Date de publication:
27 Nov 2023
Historique:
revised: 01 11 2023
received: 01 09 2023
accepted: 04 11 2023
medline: 27 11 2023
pubmed: 27 11 2023
entrez: 27 11 2023
Statut: aheadofprint

Résumé

This study aimed to investigate the ultrasound-assisted extraction of bioactive compounds from persimmon (Diospyros kaki) calyx by deep eutectic solvents (DES) with different molar ratios. For this reason, the prepared DES extracts' total phenolic-flavonoid compounds and antioxidant activities (1,1-diphenyl-2-picrilhydrazyl radical scavenging activity [DPPH•], Cupric Reducing Antioxidant Capacity (CUPRAC), and ferric reducing antioxidant power [FRAP]) were investigated as a result of the experimental design and optimization study conducted for this purpose. A sonication time of 20 min was determined as the optimal condition. Under these conditions, a molar ratio of 1.9:1 (lactic acid:choline chloride) and a water ratio of 70% provided the highest phenolic/flavonoid compounds and antioxidative activity. Correlations among water ratio, molar ratio, and sonication time were determined using principal component analysis (PCA). In conditions where total flavonoid compound, FRAP, and DPPH• are high due to PCA, it can be concluded that the sonication time is at high level; on the contrary, the water and molar ratios are at low level. In conclusion, ultrasound-assisted extraction using DES proved effective in persimmon calyx. Therefore, it can be recommended to use these environmentally friendly green solvents as an alternative to organic solvents in preparing extracts in various fields. PRACTICAL APPLICATION: This study shows the effectiveness of the ultrasound-assisted green extraction method using persimmon calyx specified as waste. These findings are compelling in the food industry in terms of consumers being now aware of green technology and the discovery that calyx is a good source of bioactive compounds.

Identifiants

pubmed: 38010748
doi: 10.1111/1750-3841.16849
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023 The Authors. Journal of Food Science published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.

Références

Alasalvar, H., & Yildirim, Z. (2021). Ultrasound-assisted extraction of antioxidant phenolic compounds from Lavandula angustifolia flowers using natural deep eutectic solvents: An experimental design approach. Sustainable Chemistry and Pharmacy, 22, 100492.
Albizzati, P. F., Tonini, D., & Astrup, T. F. (2021). High-value products from food waste: An environmental and socio-economic assessment. Science of the Total Environment, 755, 142466.
Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of agricultural and food chemistry, 52(26), 7970-7981.
Bayram, S., Kutlu, N., Gerçek, Y. C., Çelik, S., & Ecem Bayram, N. (2022). Bioactive compounds of deep eutectic solvents extracts of Hypericum perforatum L.: Polyphenolic-organic acid profile by LC-MS/MS and pharmaceutical activity. Food Bioscience, 49, 101926.
Birasuren, B., Kim, N. Y., Jeon, H. L., & Kim, M. R. (2013). Evaluation of the antioxidant capacity and phenolic content of Agriophyllum pungens seed extracts from Mongolia. Preventive Nutrition and Food Science, 18(3), 188.
Bouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., & Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99(4), 1457-1474.
Briguglio, G., Costa, C., Pollicino, M., Giambò, F., Catania, S., & Fenga, C. (2020). Polyphenols in cancer prevention: New insights. International Journal of Functional Nutrition, 1(2), 1-1.
Chisari, E., Shivappa, N., & Vyas, S. (2019). Polyphenol-rich foods and osteoporosis. Current Pharmaceutical Design, 25(22), 2459-2466.
Cunha, S. C., & Fernandes, J. O. (2018). Extraction techniques with deep eutectic solvents. TrAC Trends in Analytical Chemistry, 105, 225-239.
Çelik, S., Kutlu, N., Gerçek, Y. C., Bayram, S., Pandiselvam, R., & Bayram, N. E. (2022). Optimization of ultrasonic extraction of nutraceutical and pharmaceutical compounds from bee pollen with deep eutectic solvents using response surface methodology. Foods, 11(22), 3652.
Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some Algerian medicinal plant extracts containing phenolic compounds. Food Chemistry, 97(4), 654-660.
Duarte, H., Gomes, V., Aliaño-González, M. J., Faleiro, L., Romano, A., & Medronho, B. (2022). Ultrasound-assisted extraction of polyphenols from maritime pine residues with deep eutectic solvents. Foods, 11(23), 3754.
Gan, H. E., Karim, R., Muhammad, S. K. S., Bakar, J. A., Hashim, D. M., & Rahman, R. A. (2007). Optimization of the basic formulation of a traditional baked cassava cake using response surface methodology. LWT-Food Science and Technology, 40(4), 611-618.
Hossain, A., & Shahidi, F. (2023). Persimmon leaves: Nutritional, pharmaceutical, and industrial potential-A review. Plants, 12(4), 937.
Kaltsa, O., Lakka, A., Grigorakis, S., Karageorgou, I., Batra, G., Bozinou, E., Lalas, S., & Makris, D. P. (2020). A green extraction process for polyphenols from elderberry (Sambucus nigra) flowers using deep eutectic solvent and ultrasound-assisted pretreatment. Molecules, 25(4), 921.
Kim, H. J., & Yoon, K. Y. (2023). Optimization of ultrasound-assisted deep eutectic solvent extraction of bioactive compounds from pomegranate peel using response surface methodology. Food Science and Biotechnology, 32, 1-10.
Kumaran, A., & Joel Karunakaran, R. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Science and Technology, 40(2), 344-352.
Lanjekar, K. J., & Rathod, V. K. (2021). Green extraction of glycyrrhizic acid from Glycyrrhiza glabra using choline chloride-based natural deep eutectic solvents (NADESs). Process Biochemistry, 102, 22-32.
Lanjekar, K. J., Gokhale, S., & Rathod, V. K. (2022). Utilization of waste mango peels for extraction of polyphenolic antioxidants by ultrasound-assisted natural deep eutectic solvent. Bioresource Technology Reports, 18, 101074.
Lee, J., Kim, M., Jung, J., Heo, J. W., Lee, K. H., Kim, S., & Yoo, H. Y. (2023). Valorization of persimmon calyx, an industrial biowaste, as a potential resource for antioxidant production. Environmental Technology & Innovation, 30, 103038.
Ling, J. K. U., Chan, Y. S., & Nandong, J. (2020). Extraction of antioxidant compounds from the wastes of Mangifera pajang fruit: A comparative study using aqueous ethanol and deep eutectic solvent. SN Applied Sciences, 2(8), 1365.
Mcdonald, S., Prenzler, P. D., Antolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73(1), 73-84.
Nam, M. W., Zhao, J., Lee, M. S., Jeong, J. H., & Lee, J. (2015). Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chemistry, 17(3), 1718-1727.
Oktaviyanti, N. D., Kartini, & Mun'im, A. (2019). Application and optimization of ultrasound-assisted deep eutectic solvent for the extraction of new skin-lightening cosmetic materials from Ixora javanica flower. Heliyon, 5(11), e02950.
Park, H. E., Tang, B., & Row, K. H. (2014). Application of deep eutectic solvents as additives in ultrasonic extraction of two phenolic acids from Herba Artemisiae Scopariae. Analytical Letters, 47(9), 1476-1484.
Perera, C. O., & Alzahrani, M. A. J. (2021). Ultrasound as a pre-treatment for extraction of bioactive compounds and food safety: A review. LWT, 142, 111114.
Ruesgas-Ramón, M., Figueroa-Espinoza, M. C., & Durand, E. (2017). Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. Journal of Agricultural and Food Chemistry, 65(18), 3591-3601.
Salazar-Bermeo, J., Moreno-Chamba, B., Heredia-Hortigüela, R., Lizama, V., Martínez-Madrid, M. C., Saura, D., Valero, M., Neacsu, M., & Martí, N. (2023). Green technologies for persimmon by-products revalorisation as sustainable sources of dietary fibre and antioxidants for functional beverages development. Antioxidants, 12(5), 1085.
Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114(21), 11060-11082.
Tang, B., Zhang, H., & Row, K. H. (2015). Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of Separation Science, 38(6), 1053-1064.
Uma, D. B., Ho, C. W., & Wan Aida, W. M. (2010). Optimization of extraction parameters of total phenolic compounds from Henna (Lawsonia inermis) leaves. Sains Malaysiana, 39(1), 119-128.
Upadhyay, N. K., Yogendra Kumar, M. S., & Gupta, A. (2010). Antioxidant, cytoprotective and antibacterial effects of sea buckthorn (Hippophae) leaves. Food and Chemical Toxicology, 48(12), 3443-3448.
Wang, T., Guo, N., Wang, S. X., Kou, P., Zhao, C. J., & Fu, Y.-J. (2018). Ultrasound-negative pressure cavitation extraction of phenolic compounds from blueberry leaves and evaluation of its DPPH radical scavenging activity. Food and Bioproducts Processing, 108, 69-80.
Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., Ma, H., & Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops-A review. Ultrasonics Sonochemistry, 48, 538-549.
Wu, L., Li, L., Chen, S., Wang, L., & Lin, X. (2020). Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology, 247, 117014.
Xu, M., Ran, L., Chen, N., Fan, X., Ren, D., & Yi, L. (2019). Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chemistry, 297, 124970.
Yao, X.-H., Zhang, D.-Y., Duan, M.-H., Cui, Q. i., Xu, W.-J., Luo, M., Li, C.-Y., Zu, Y.-G., & Fu, Y.-J (2015). Preparation and determination of phenolic compounds from Pyrola incarnata Fisch. with a green polyols based-deep eutectic solvent. Separation and Purification Technology, 149, 116-123.
Zainal-Abidin, M. H., Hayyan, M., Hayyan, A., & Jayakumar, N. S. (2017). New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta, 979, 1-23.
Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress, and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33-42.
Zhang, Q., De Oliveira Vigier, K., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108-7146.
Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Natural Product Communications, 17(1), 1934578X2110697.
Zheng, B., Yuan, Y., Xiang, J., Jin, W., Johnson, J. B., Li, Z., Wang, C., & Luo, D. (2022). Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison, and bioactivities. LWT, 154, 112740.
Zhou, P., Wang, X., Liu, P., Huang, J., Wang, C., Pan, M., & Kuang, Z. (2018). Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Industrial Crops and Products, 120, 147-154.
Zillich, O. V., Schweiggert-Weisz, U., Eisner, P., & Kerscher, M. (2015). Polyphenols as active ingredients for cosmetic products. International Journal of Cosmetic Science, 37(5), 455-464.

Auteurs

Naciye Kutlu (N)

Department of Food Processing, Bayburt University, Bayburt, Turkiye.

Aybike Kamiloğlu (A)

Department of Food Engineering, Bayburt University, Bayburt, Turkiye.

Tuğba Elbir Abca (TE)

Department of Food Engineering, Bayburt University, Bayburt, Turkiye.

Özlem Yilmaz (Ö)

Department of Hotel, Restaurant and Catering, Bayburt University, Bayburt, Turkiye.

Classifications MeSH