Influence of magnetic field on a novel scintillation dosimeter in a 1.5 T MR-linac.
MRI-linac
radiotherapy
scintillation dosimetry
time-resolved dosimetry
Journal
Journal of applied clinical medical physics
ISSN: 1526-9914
Titre abrégé: J Appl Clin Med Phys
Pays: United States
ID NLM: 101089176
Informations de publication
Date de publication:
27 Nov 2023
27 Nov 2023
Historique:
revised:
23
08
2023
received:
30
06
2023
accepted:
18
09
2023
medline:
27
11
2023
pubmed:
27
11
2023
entrez:
27
11
2023
Statut:
aheadofprint
Résumé
For commissioning and quality assurance for adaptive workflows on the MR-linac, a dosimeter which can measure time-resolved dose during MR image acquisition is desired. The Blue Physics model 10 scintillation dosimeter is potentially an ideal detector for such measurements. However, some detectors can be influenced by the magnetic field of the MR-linac. To assess the calibration methods and magnetic field dependency of the Blue Physics scintillator in the 1.5 T MR-linac. Several calibration methods were assessed for robustness. Detector characteristics and the influence of the calibration methods were assessed based on dose reproducibility, dose linearity, dose rate dependency, relative output factor (ROF), percentage depth dose profile, axial rotation and the radial detector orientation with respect to the magnetic field. The potential application of time-resolved dynamic dose measurements during MRI acquisition was assessed. A variation of calibration factors was observed for different calibration methods. Dose reproducibility, dose linearity and dose rate stability were all found to be within tolerance and were not significantly affected by different calibration methods. Measurements with the detector showed good correspondence with reference chambers. The ROF and radial orientation dependence measurements were influenced by the calibration method used. Axial detector dependence was assessed and relative readout differences of up to 2.5% were observed. A maximum readout difference of 10.8% was obtained when rotating the detector with respect to the magnetic field. Importantly, measurements with and without MR image acquisition were consistent for both static and dynamic situations. The Blue Physics scintillation detector is suitable for relative dosimetry in the 1.5 T MR-linac when measurements are within or close to calibration conditions.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14180Subventions
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek
ID : 18495
Organisme : European Metrology Programme for Innovation and Research
ID : 19NRM01
Informations de copyright
© 2023 The Authors. Journal of Applied Clinical Medical Physics is published by Wiley Periodicals, Inc. on behalf of The American Association of Physicists in Medicine.
Références
Lagendijk JJW, Raaymakers BW, Raaijmakers AJE, et al. MRI/linac integration. Radiother Oncol. 2008;86:25-29.
Chandarana H, Wang H, Tijssen RHN, Das IJ. Emerging role of MRI in radiation therapy. J Magn Reson Imaging. 2018;48:1468-1478.
Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH, et al. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017;62:L41-L50.
Winkel D, Bol GH, Kroon PS, et al. Adaptive radiotherapy: the Elekta unity MR-linac concept. Clin Transl Radiat Oncol. 2019;18:54-59.
Willigenburg T, Zachiu C, Bol GH, et al. Clinical application of a sub-fractionation workflow for intrafraction re-planning during prostate radiotherapy treatment on a 1.5 Tesla MR-Linac: a practical method to mitigate intrafraction motion. Radiother Oncol. 2022;176:25-30.
Elekta Unity's motion management capabilities herald a new era in precision radiation therapy - Elekta
Hackett S, Asselen B, Philippens M, Woodings S, Wolthaus J. Magnetic Resonance-Guided Adaptive Radiotherapy: Technical Concepts. Springer International Publishing; 2022:135-158.
Fast M, Schoot A, Lindt T, Carbaat C, Heide U, Sonke JJ. Tumor trailing for liver SBRT on the MR-linac. Int J Radiat Oncol Biol Phys. 2019;103:468-478.
Uijtewaal P, Borman PTS, Woodhead PL, Hackett SL, Raaymakers BW, Fast MF. Dosimetric evaluation of MRI-guided multi-leaf collimator tracking and trailing for lung stereotactic body radiation therapy. Med Phys. 2021;48:1520-1532.
Spindeldreier CK, Schrenk O, Bakenecker A, et al. Radiation dosimetry in magnetic fields with farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations. Phys Med Biol. 2017;62:6708-6728.
Thorwarth D, Low DA. Technical challenges of real-time adaptive MR-guided radiotherapy. Front Oncol. 2021;11:1-7.
Beddar AS, Mackie TR, Attix FH. Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations. Phys Med Biol. 1992;37:1883-1900.
Beddar AS, Mackie TR, Attix FH. Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements. Phys Med Biol. 1992;37:1883-1900.
Beddar AS, Mackie TR, Attix FH. Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams. Phys Med Biol. 1992;37:925-935.
Beddar AS. Plastic scintillation dosimetry and its application to radiotherapy. Radiat Meas. 2006;41:124-133.
Klavsen MF, Ankjaergaard C, Behrens CP, et al. Time-resolved plastic scintillator dosimetry in MR linear accelerators without image distortion. Radiat Meas. 2022;154:106759.
Madden L, Holloway L, Rosenfeld A, Li E. Fibre-optic dosimetry for MRI-LINACs: a mini-review. Front Phys. 2022;10:1-8.
Madden L, Archer J, Li E, et al. First measurements with a plastic scintillation dosimeter at the Australian MRI-LINAC. Phys Med Biol. 2019;64:175015.
Liu PZY, Suchowerska N, Lambert J, Abolfathi P, McKenzie DR. Plastic scintillation dosimetry: comparison of three solutions for the Cerenkov challenge. Phys Med Biol. 2011;56:5805-5821.
Yoon J, Kim JI, Choi CH, Park JM. Characteristics of the exradin W1 scintillator in the magnetic field. J Appl Clin Med Phys. 2019;20:149-156.
Therriault-Proulx F, Wen Z, Ibbott G, Beddar S. Effect of magnetic field strength on plastic scintillation detector response. Radiat Meas. 2018;116:10-13.
Raaijmakers AJE, Raaymakers BW, Lagendijk JJW. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50:1363-1376.
Raaijmakers AJE, Raaymakers BW, Lagendijk JJW. Experimental verification of magnetic field dose effects for the MRI-accelerator. Phys Med Biol. 2007;52:4283-4291.
Smit K, Asselen B, Kok JGM, Aalbers AHL, Lagendijk JJW, Raaymakers BW. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading. Phys Med Biol. 2013;58:5945-5957.
Ferrer C, Huertas C, García D, Sáez M. Dosimetric characterization of a novel commercial plastic scintillation detector with an MR-Linac. Med Phys. 2023;50(4):2525-2539.
Underwood TSA, Rowland BC, Ferrand R, Vieillevigne L. Application of the exradin W1 scintillator to determine ediode 60017 and microDiamond 60019 correction factors for relative dosimetry within small MV and FFF fields. Phys Med Biol. 2015;60:6669-6683.
PTW Dosimetry. Detectors for Ionizing Radiation. PTW Dosimetry; 2023.
Woodings SJ, Wolthaus JWH, Van Asselen B, et al. Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac. Phys Med Biol. 2018;63:05NT04.
Hackett SL, Van Asselen B, Wolthaus JWH, et al. Consequences of air around an ionization chamber: are existing solid phantoms suitable for reference dosimetry on an MR-linac? Med Phys. 2016;43:3961-3968.
Commission International Electrotechnical. IEC 61217 Radiotherapy equipment - Coordinates movements and scales. International Electrotechnical Commission; 2011.
PTW Dosimetry. Dosimetry and QA Solutions for MR-Guided Radiotherapy. PTW Dosimetry; 2023.
Palmans H, Andreo P, Huq MS, Seuntjens J, Christaki KE, Meghzifene A. Dosimetry of small static fields used in external photon beam radiotherapy: summary of TRS-483, the IAEA-AAPM international code of practice for reference and relative dose determination. Med Phys. 2018;45:1123-1145.
International Atomic Energy Agency. Dosimetry of small static fields used in external beam radiotherapy. No. 483 in Technical Reports Series. International Atomic Energy Agency; 2017.
Nederlandse Commissie voor Stralingsdosimetrie. Quality control of medical linear accelerators: current practice and minimum requirements. Nederlandse Commissie voor Stralingsdosimetrie; 2018.
Klein EE, Hanley J, Bayouth J, et al. Task group 142 report: quality assurance of medical acceleratorsa. Med Phys. 2009;36:4197-4212.
O'Brien DJ, Dolan J, Pencea S, Schupp N, Sawakuchi GO. Relative dosimetry with an MR-linac: response of ion chambers, diamond, and diode detectors for off-axis, depth dose, and output factor measurements: Response. Med Phys. 2018;45:884-897.
Cervantes Y, Duchaine J, Billas I, Duane S, Bouchard H. Monte Carlo calculation of detector perturbation and quality correction factors in a 1.5 T magnetic resonance guided radiation therapy small photon beams. Phys Med Biol. 2021;66:2525-2539.
Stefanowicz S, Latzel H, Lindvold LR, Andersen CE, Jäkel O, Greilich S. Dosimetry in clinical static magnetic fields using plastic scintillation detectors. Radiat Meas. 2013;56:357-360.
Uijtewaal P, Côté B, Foppen T, et al. Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac. Phys Med Biol. 2023;68:04NT01.