Two distinct mechanisms lead to either oocyte or spermatocyte decrease in C. elegans after whole developmental exposure to γ-rays.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2023
2023
Historique:
received:
02
08
2023
accepted:
07
11
2023
medline:
29
11
2023
pubmed:
27
11
2023
entrez:
27
11
2023
Statut:
epublish
Résumé
Wildlife is subject to various sources of pollution, including ionizing radiation. Adverse effects can impact the survival, growth, or reproduction of organisms, later affecting population dynamics. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help to comprehend species-specific differences in radiosensitivity. From our previous studies, we found that decrease in reproduction is life stage dependent in the roundworm Caenorhabditis elegans, possibly resulting from an accumulation of damages during germ cell development and gamete differentiation. To go further, we used the same experimental design to assess more precisely the molecular determinants of reproductive toxicity, primarily decreases in gamete number. As before, worms were chronically exposed to 50 mGy·h-1 external gamma ionizing radiation throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). To enable cross species extrapolation, conserved molecular pathways across invertebrates and vertebrates were analysed: apoptosis and MAP kinase Ras/ERK (MPK-1), both involved in reproduction and stress responses. Our results showed that these pathways are life-stage dependent, resulting from an accumulation of damages upon chronic exposure to IR throughout the life development. The Ras/ERK pathway was activated in our conditions in the pachytene region of the gonad where it regulates cell fate including apoptosis, but not in the ovulation zone, where it controls oocyte maturation and ovulation. Additionally, assessment of germ cell proliferation via Ras/ERK pathway showed no effect. Finally, a functional analysis of apoptosis revealed that while the decrease of the ovulation rate is caused by DNA-damaged induced apoptosis, this process does not occur in spermatocytes. Thus, sperm decrease seems to be mediated via another mechanism, probably a decrease in germ cell proliferation speed that needs further investigation to better characterize sex-specific responses to IR exposure. These results are of main importance to describe radio-induced reprotoxic effects and contribute as weight of evidence for the AOP #396 "Deposition of ionizing energy leads to population decline via impaired meiosis".
Identifiants
pubmed: 38011087
doi: 10.1371/journal.pone.0294766
pii: PONE-D-23-24333
pmc: PMC10681227
doi:
Substances chimiques
Caenorhabditis elegans Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0294766Informations de copyright
Copyright: © 2023 Dufourcq Sekatcheff et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Arch Biochem Biophys. 2000 Apr 1;376(1):14-25
pubmed: 10729186
Sci Total Environ. 2019 Dec 10;695:133835
pubmed: 31425988
Elife. 2019 Jan 01;8:
pubmed: 30599091
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Sci Total Environ. 2019 Aug 1;676:767-781
pubmed: 31055208
Cell Rep. 2021 May 25;35(8):109162
pubmed: 34038716
Int J Mol Sci. 2021 Sep 24;22(19):
pubmed: 34638618
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4776-81
pubmed: 19264959
J Toxicol Environ Health A. 2017;80(16-18):830-844
pubmed: 28837407
Microbiol Mol Biol Rev. 2004 Jun;68(2):320-44
pubmed: 15187187
J Environ Radioact. 2008 Jan;99(1):134-45
pubmed: 17822811
Ecotoxicol Environ Saf. 2021 Dec 1;225:112793
pubmed: 34544019
J Vis Exp. 2013 Oct 14;(80):
pubmed: 24145964
Adv Exp Med Biol. 2013;757:249-76
pubmed: 22872480
Environ Res. 2011 Jul;111(5):626-34
pubmed: 21489518
Oncogene. 2003 Sep 1;22(37):5885-96
pubmed: 12947395
Genetics. 2019 Sep;213(1):173-194
pubmed: 31296532
Cell. 1993 Nov 19;75(4):641-52
pubmed: 8242740
Cancer Lett. 2012 Dec 31;327(1-2):48-60
pubmed: 22182453
Dev Biol. 2006 Apr 1;292(1):142-51
pubmed: 16480707
Elife. 2020 Sep 17;9:
pubmed: 32940599
Environ Mol Mutagen. 2015 Dec;56(9):724-50
pubmed: 26010389
Development. 2013 Apr;140(8):1645-54
pubmed: 23487310
Environ Toxicol Chem. 2010 Mar;29(3):730-41
pubmed: 20821501
WormBook. 2008 Sep 04;:1-20
pubmed: 18781708
Dose Response. 2019 Jan 10;17(1):1559325818820981
pubmed: 30733651
Biochem Biophys Res Commun. 2017 Sep 30;491(4):1077-1082
pubmed: 28782521
PLoS Genet. 2013 Nov;9(11):e1003943
pubmed: 24278030
Development. 1995 Aug;121(8):2525-35
pubmed: 7671816
Genetics. 2007 Dec;177(4):2039-62
pubmed: 18073423
Mutagenesis. 2011 Nov;26(6):783-93
pubmed: 21825113
Int J Radiat Biol. 2022;98(12):1816-1831
pubmed: 35976054
WormBook. 2005 Sep 01;:1-4
pubmed: 18050415
Radiat Res. 2007 Nov;168(5):515-26
pubmed: 17973550
PLoS Genet. 2017 Apr 14;13(4):e1006738
pubmed: 28410423
PLoS Genet. 2011 Aug;7(8):e1002238
pubmed: 21901106
Dev Cell. 2013 Oct 28;27(2):227-240
pubmed: 24120884
Mol Cell. 2000 Mar;5(3):435-43
pubmed: 10882129
Nucleic Acids Res. 2018 Jul 6;46(12):6129-6139
pubmed: 29788264
J Vis Exp. 2016 Nov 29;(117):
pubmed: 27929466
J Biol Chem. 2010 Sep 24;285(39):30274-81
pubmed: 20624915
J Environ Radioact. 2014 Nov;137:190-197
pubmed: 25102824
Genes Dev. 2003 Jan 15;17(2):187-200
pubmed: 12533508
Biochim Biophys Acta. 2014 Feb;1843(2):299-308
pubmed: 24239721
Development. 1999 Feb;126(5):1011-22
pubmed: 9927601
Evol Appl. 2022 Sep 02;15(9):1331-1343
pubmed: 36187185
J Environ Radioact. 2015 Feb;140:11-5
pubmed: 25461510
Science. 2001 Mar 16;291(5511):2144-7
pubmed: 11251118