Fabrication of angstrom-scale two-dimensional channels for mass transport.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
27 Nov 2023
Historique:
received: 03 01 2023
accepted: 31 08 2023
medline: 28 11 2023
pubmed: 28 11 2023
entrez: 27 11 2023
Statut: aheadofprint

Résumé

Fluidic channels at atomic scales regulate cellular trafficking and molecular filtration across membranes, and thus play crucial roles in the functioning of living systems. However, constructing synthetic channels experimentally at these scales has been a significant challenge due to the limitations in nanofabrication techniques and the surface roughness of the commonly used materials. Angstrom (Å)-scale slit-like channels overcome such challenges as these are made with precise control over their dimensions and can be used to study the fluidic properties of gases, ions and water at unprecedented scales. Here we provide a detailed fabrication method of the two-dimensional Å-scale channel devices that can be assembled to contain a desired number of channels, a single channel or up to hundreds of channels, made with atomic-scale precision using layered crystals. The procedure includes the fabrication of the substrate, flake, spacer layer, flake transfers, van der Waals assembly and postprocessing. We further explain how to perform molecular transport measurements with the Å-channels to directly probe the intriguing and anomalous phenomena that help shed light on the physics governing ultra-confined transport. The procedure requires a total of 1-2 weeks for the fabrication of the two-dimensional channel device and is suitable for users with prior experience in clean room working environments and nanofabrication.

Identifiants

pubmed: 38012396
doi: 10.1038/s41596-023-00911-x
pii: 10.1038/s41596-023-00911-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/V048112/1
Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/W006502/1
Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/X019225/1
Organisme : RCUK | Engineering and Physical Sciences Research Council (EPSRC)
ID : EP/W006502/1
Organisme : Royal Society
ID : IES\R3\203066
Organisme : Royal Society
ID : URF\R1\180127
Organisme : Royal Society
ID : RF\ERE\210016
Organisme : Leverhulme Trust
ID : PLP-2021-262
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 852674 - AngstroCAP

Informations de copyright

© 2023. Springer Nature Limited.

Références

Eijkel, J. C. T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluidics. 1, 249–267 (2005).
doi: 10.1007/s10404-004-0012-9
Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).
pubmed: 20179826 doi: 10.1039/B909366B
Convery, N. & Gadegaard, N. 30 years of microfluidics. Micro Nano. Eng. 2, 76–91 (2019).
doi: 10.1016/j.mne.2019.01.003
van den Berg, A., Craighead, H. G. & Yang, P. From microfluidic applications to nanofluidic phenomena. Chem. Soc. Rev. 39, 899–900 (2010).
pubmed: 20179812 doi: 10.1039/c001349h
Agre, P. The aquaporin water channels. Proc. Am. Thorac. Soc. 3, 5–13 (2006).
pubmed: 16493146 pmcid: 2658677 doi: 10.1513/pats.200510-109JH
Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).
pubmed: 23990564 doi: 10.1126/science.1230444
Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846 (2010).
pubmed: 20150497 doi: 10.1126/science.1181761
Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469 (2002).
pubmed: 11799235 doi: 10.1126/science.1067208
Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).
pubmed: 23042491 doi: 10.1038/nnano.2012.162
Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289 (2014).
pubmed: 24744372 doi: 10.1126/science.1249097
Jiang, D.-E., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009).
pubmed: 19995080 doi: 10.1021/nl9021946
Berezhkovskii, A. & Hummer, G. Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 89, 064503 (2002).
pubmed: 12190588 doi: 10.1103/PhysRevLett.89.064503
Lee, C. Y., Choi, W., Han, J.-H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320 (2010).
pubmed: 20829480 doi: 10.1126/science.1193383
Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).
pubmed: 27604947 pmcid: 5015706 doi: 10.1038/nature19315
Won, C. Y. & Aluru, N. R. Water permeation through a subnanometer boron nitride nanotube. J. Am. Chem. Soc. 129, 2748–2749 (2007).
pubmed: 17305343 doi: 10.1021/ja0687318
Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).
pubmed: 23446417 doi: 10.1038/nature11876
Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752 (2014).
pubmed: 24531966 doi: 10.1126/science.1245711
Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442 (2012).
pubmed: 22282806 doi: 10.1126/science.1211694
Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).
pubmed: 25980986 doi: 10.1039/C4CS00423J
Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).
pubmed: 31454866 doi: 10.1021/acsnano.9b06394
Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).
doi: 10.1038/natrevmats.2016.98
Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).
pubmed: 26208121 doi: 10.1021/acsnano.5b03591
Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44 (2005).
pubmed: 16267546 doi: 10.1038/438044a
Feng, J. et al. Observation of ionic coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).
pubmed: 27019385 doi: 10.1038/nmat4607
Ayuk, E., Ugwu, M. & Aronimo, S. B. A review on synthetic methods of nanostructured materials. Chem. Res. J. 2, 97–123 (2017).
Biswas, A. et al. Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012).
pubmed: 22154364 doi: 10.1016/j.cis.2011.11.001
Chen, Q. & Liu, Z. Fabrication and applications of solid-state nanopores. Sensors 19, 1886 (2019).
pubmed: 31010038 pmcid: 6515193 doi: 10.3390/s19081886
Storm, A., Chen, J., Ling, X., Zandbergen, H. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).
pubmed: 12858166 doi: 10.1038/nmat941
Kim, M. J., McNally, B., Murata, K. & Meller, A. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18, 205302 (2007).
doi: 10.1088/0957-4484/18/20/205302
Lin, Y., Ying, Y.-L., Shi, X., Liu, S.-C. & Long, Y.-T. Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chem. Commun. 53, 11564–11567 (2017).
doi: 10.1039/C7CC06775E
Krapf, D. et al. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 6, 105–109 (2006).
pubmed: 16402796 doi: 10.1021/nl052163x
Lo, C. J., Aref, T. & Bezryadin, A. Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17, 3264 (2006).
doi: 10.1088/0957-4484/17/13/031
Gierak, J. et al. Sub-5 nm FIB direct patterning of nanodevices. Microelectron. Eng. 84, 779–783 (2007).
doi: 10.1016/j.mee.2007.01.059
O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).
pubmed: 24490698 doi: 10.1021/nl404118f
Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).
pubmed: 22492975 pmcid: 3340994 doi: 10.1073/pnas.1119827109
Walker, M. I. et al. Extrinsic cation selectivity of 2D membranes. ACS Nano 11, 1340–1346 (2017).
pubmed: 28157333 pmcid: 5333182 doi: 10.1021/acsnano.6b06034
Zhou, Z. et al. DNA translocation through hydrophilic nanopore in hexagonal boron nitride. Sci. Rep. 3, 3287 (2013).
pubmed: 24256703 pmcid: 3836030 doi: 10.1038/srep03287
Danda, G. et al. Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano 11, 1937–1945 (2017).
pubmed: 28125779 pmcid: 5893941 doi: 10.1021/acsnano.6b08028
Mojtabavi, M., VahidMohammadi, A., Liang, W., Beidaghi, M. & Wanunu, M. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano 13, 3042–3053 (2019).
pubmed: 30844249 doi: 10.1021/acsnano.8b08017
Murray, D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137, 3450–3453 (2015).
pubmed: 25715659 doi: 10.1021/ja512018j
Guan, C. Z., Wang, D. & Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).
doi: 10.1039/c2cc16892h
Dey, K. et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139, 13083–13091 (2017).
pubmed: 28876060 doi: 10.1021/jacs.7b06640
Spitzer, S. et al. Solvent-free on-surface synthesis of boroxine COF monolayers. Chem. Commun. 53, 5147–5150 (2017).
doi: 10.1039/C7CC01131H
Kambe, T. et al. pi-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013).
pubmed: 23360513 doi: 10.1021/ja312380b
Motoyama, S., Makiura, R., Sakata, O. & Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal–organic framework sheets. J. Am. Chem. Soc. 133, 5640–5643 (2011).
pubmed: 21449561 doi: 10.1021/ja110720f
Kidambi, P. R. et al. Facile fabrication of large-area atomically thin membranes by direct synthesis of graphene with nanoscale porosity. Adv. Mater. 30, 1804977 (2018).
doi: 10.1002/adma.201804977
Liu, J. et al. Hydrophobic, flexible, and lightweight mxene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017).
doi: 10.1002/adma.201702367
Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).
pubmed: 29650671 doi: 10.1126/science.aar2009
Shao, J. J., Raidongia, K., Koltonow, A. R. & Huang, J. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 6, 7602 (2015).
pubmed: 26165550 doi: 10.1038/ncomms8602
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
pubmed: 23887427 doi: 10.1038/nature12385
Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).
pubmed: 29111548 doi: 10.1039/C7CS00556C
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).
pubmed: 28953885 doi: 10.1038/nature23905
Huang, Y. et al. Emerging magnetic interactions in van der Waals heterostructures. Nano Lett. 20, 7852–7859 (2020).
pubmed: 33054240 doi: 10.1021/acs.nanolett.0c02175
Pham, D. K. Electronic properties of a two-dimensional van der Waals MoGe2N4/MoSi2N4 heterobilayer: effect of the insertion of a graphene layer and interlayer coupling. RSC Adv. 11, 28659–28666 (2021).
pubmed: 35478545 pmcid: 9038126 doi: 10.1039/D1RA04531H
Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).
pubmed: 34497390 doi: 10.1038/s41586-021-03581-5
Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).
pubmed: 27602512 doi: 10.1038/nature19363
Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).
pubmed: 29074772 doi: 10.1126/science.aan5275
Keerthi, A. et al. Ballistic molecular transport through two-dimensional channels. Nature 558, 420–424 (2018).
pubmed: 29925968 doi: 10.1038/s41586-018-0203-2
Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).
pubmed: 30630924 doi: 10.1126/science.aau6771
Mouterde, T. et al. Molecular streaming and its voltage control in ångström-scale channels. Nature 567, 87–90 (2019).
pubmed: 30842639 doi: 10.1038/s41586-019-0961-5
Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).
pubmed: 29930134 doi: 10.1126/science.aat4191
Yang, W. et al. Translocation of DNA through ultrathin nanoslits. Adv. Mater. 33, 2007682 (2021).
doi: 10.1002/adma.202007682
Knudsen, M. Die gesetze der molekularströmung und der inneren reibungsströmung der gase durch röhren. Ann. der Phys. 333, 75–130 (1909).
doi: 10.1002/andp.19093330106
Smoluchowski, M. V. Zur kinetischen theorie der transpiration und diffusion verdünnter gase. Ann. der Phys. 338, 1559–1570 (1910).
doi: 10.1002/andp.19103381623
Livesey, R. G. & Lafferty, J. M. Foundations of Vacuum Science and Technology (Wiley, 1998).
Lei, W., Rigozzi, M. K. & McKenzie, D. R. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review. Rep. Prog. Phys. 79, 025901 (2016).
pubmed: 26837538 doi: 10.1088/0034-4885/79/2/025901
Han, Y.-L., Phillip Muntz, E., Alexeenko, A. & Young, M. Experimental and computational studies of temperature gradient–driven molecular transport in gas flows through nano/microscale channels. Nanoscale Microscale Thermophys. Eng. 11, 151–175 (2007).
doi: 10.1080/15567260701337209
Scorrano, G. et al. Gas flow at the ultra-nanoscale: universal predictive model and validation in nanochannels of ångstrom-level resolution. ACS Appl. Mater. Interfaces 10, 32233–32238 (2018).
pubmed: 30185043 pmcid: 6836450 doi: 10.1021/acsami.8b11455
Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034 (2006).
pubmed: 16709781 doi: 10.1126/science.1126298
Majumder, M., Chopra, N. & Hinds, B. J. Mass transport through carbon nanotube membranes in three different regimes: Ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011).
pubmed: 21500837 doi: 10.1021/nn200222g
Steckelmacher, W. A review of the molecular flow conductance for systems of tubes and components and the measurement of pumping speed. Vacuum 16, 561–584 (1966).
doi: 10.1016/0042-207X(66)91416-3
Bhatia, S., Bonilla, M. & Nicholson, D. Molecular transport in nanopores: a theoretical perspective. Phys. Chem. Chem. Phys. 13, 15350–15383 (2011).
pubmed: 21750793 doi: 10.1039/c1cp21166h
Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).
pubmed: 22668008 doi: 10.1021/nl3012853
Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).
pubmed: 26465062 doi: 10.1038/ncomms9616
Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).
pubmed: 23848277 doi: 10.1021/la4018695
Gai, J.-G., Gong, X.-L., Wang, W.-W., Zhang, X. & Kang, W.-L. An ultrafast water transport forward osmosis membrane: porous graphene. J. Mater. Chem. A. 2, 4023–4028 (2014).
doi: 10.1039/c3ta14256f
Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).
pubmed: 11700553 doi: 10.1038/35102535
Qin, X., Yuan, Q., Zhao, Y., Xie, S. & Liu, Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 11, 2173–2177 (2011).
pubmed: 21462938 doi: 10.1021/nl200843g
Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).
pubmed: 20845964 doi: 10.1021/nl1021046
Mücksch, C., Rösch, C., Müller−Renno, C., Ziegler, C. & Urbassek, H. M. Consequences of hydrocarbon contamination for wettability and protein adsorption on graphite surfaces. J. Phys. Chem. C. 119, 12496–12501 (2015).
doi: 10.1021/acs.jpcc.5b02948
Yang, Q. et al. Capillary condensation under atomic-scale confinement. Nature 588, 250–253 (2020).
pubmed: 33299189 doi: 10.1038/s41586-020-2978-1
Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).
pubmed: 22842512 doi: 10.1038/nmat3386
Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 562–566 (2009).
pubmed: 19734927 doi: 10.1038/nnano.2009.191
Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).
pubmed: 20720538 pmcid: 2956266 doi: 10.1038/nature09379
Kim, K., Luo, H., Zhu, T., Pierron, O. N. & Graham, S. Influence of polymer substrate damage on the time dependent cracking of SiNx barrier films. Sci. Rep. 8, 4560 (2018).
pubmed: 29540713 pmcid: 5852237 doi: 10.1038/s41598-018-22105-2
Garcia, S. P., Bao, H. & Hines, M. A. Etchant anisotropy controls the step bunching instability in KOH etching of silicon. Phys. Rev. Lett. 93, 166102 (2004).
pubmed: 15525007 doi: 10.1103/PhysRevLett.93.166102
Graf, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14, 1130–1168 (2019).
pubmed: 30903110 doi: 10.1038/s41596-019-0131-0
Sato, K. et al. Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sens. Actuator A Phys. 64, 87–93 (1998).
doi: 10.1016/S0924-4247(97)01658-0
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
pubmed: 15499015 doi: 10.1126/science.1102896
Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).
doi: 10.1063/1.2768624
Gorbachev, R. V. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011).
pubmed: 21360804 doi: 10.1002/smll.201001628
Nair, R. R. et al. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl. Phys. Lett. 97, 3 (2010).
doi: 10.1063/1.3492845
Tu, J.-S. in Alignment Controlled Graphene on hBN Substrate for Graphene Based Capacitor and Tunneling Transistor (University of Manchester, 2015).
Sajja, R. et al. Hydrocarbon contamination in angström-scale channels. Nanoscale 13, 9553–9560 (2021).
pubmed: 34018493 doi: 10.1039/D1NR00001B
Wright, M. R. in An Introduction to Aqueous Electrolyte Solutions (John Wiley, 2007).
Haynes, W. M. in CRC Handbook of Chemistry and Physics (CRC Press, 2016).
Perram, J. W. & Stiles, P. J. On the nature of liquid junction and membrane potentials. Phys. Chem. Chem. Phys. 8, 4200–4213 (2006).
pubmed: 16971988 doi: 10.1039/b601668e
Keerthi, A. et al. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12, 3092 (2021).
pubmed: 34035239 pmcid: 8149694 doi: 10.1038/s41467-021-23325-3
Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).
pubmed: 36634187 doi: 10.1126/science.adc9931

Auteurs

Ankit Bhardwaj (A)

National Graphene Institute, The University of Manchester, Manchester, UK.
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.

Marcos Vinicius Surmani Martins (MV)

National Graphene Institute, The University of Manchester, Manchester, UK.
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.

Yi You (Y)

National Graphene Institute, The University of Manchester, Manchester, UK.
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.

Ravalika Sajja (R)

National Graphene Institute, The University of Manchester, Manchester, UK.
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.

Max Rimmer (M)

National Graphene Institute, The University of Manchester, Manchester, UK.
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.

Solleti Goutham (S)

National Graphene Institute, The University of Manchester, Manchester, UK.
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.

Rongrong Qi (R)

National Graphene Institute, The University of Manchester, Manchester, UK.
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.

Sidra Abbas Dar (S)

National Graphene Institute, The University of Manchester, Manchester, UK.
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK.

Boya Radha (B)

National Graphene Institute, The University of Manchester, Manchester, UK. radha.boya@manchester.ac.uk.
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, UK. radha.boya@manchester.ac.uk.

Ashok Keerthi (A)

National Graphene Institute, The University of Manchester, Manchester, UK. ashok.keerthi@manchester.ac.uk.
Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK. ashok.keerthi@manchester.ac.uk.

Classifications MeSH