Therapeutic potential and possible mechanisms of ginseng for depression associated with COVID-19.
ACE2 receptor
COVID-19
Cytokine storm
Depression
Ginseng
Journal
Inflammopharmacology
ISSN: 1568-5608
Titre abrégé: Inflammopharmacology
Pays: Switzerland
ID NLM: 9112626
Informations de publication
Date de publication:
27 Nov 2023
27 Nov 2023
Historique:
received:
19
08
2023
accepted:
17
10
2023
medline:
28
11
2023
pubmed:
28
11
2023
entrez:
27
11
2023
Statut:
aheadofprint
Résumé
Recently, a global outbreak of COVID-19 has rapidly spread to various national regions. As the number of COVID-19 patients has increased, some of those infected with SARS-CoV-2 have developed a variety of psychiatric symptoms, including depression, cognitive impairment, and fatigue. A distinct storm of inflammatory factors that contribute to the initial disease but also a persistent post-acute phase syndrome has been reported in patients with COVID-19. Neuropsychological symptoms including depression, cognitive impairment, and fatigue are closely related to circulating and local (brain) inflammatory factors. Natural products are currently being examined for their ability to treat numerous complications caused by COVID-19. Among them, ginseng has anti-inflammatory, immune system stimulating, neuroendocrine modulating, and other effects, which may help improve psychiatric symptoms. This review summarizes the basic mechanisms of COVID-19 pneumonia, psychiatric symptoms following coronavirus infections, effects of ginseng on depression, restlessness, and other psychiatric symptoms associated with post-COVID syn-dromes, as well as possible mechanisms underlying these effects.
Identifiants
pubmed: 38012459
doi: 10.1007/s10787-023-01380-0
pii: 10.1007/s10787-023-01380-0
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Changchun City Science and Technology Development Plan Key Project
ID : 21ZGY16
Organisme : National Natural Science Foundation of China
ID : No.82371540
Informations de copyright
© 2023. The Author(s).
Références
Alcocer-Gómez E, de Miguel M, Casas-Barquero N, Núñez-Vasco J, Sánchez-Alcazar JA, Fernández-Rodríguez A et al (2014) NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun 36:111–117
doi: 10.1016/j.bbi.2013.10.017
pubmed: 24513871
Alcocer-Gómez E, Casas-Barquero N, Williams MR, Romero-Guillena SL, Cañadas-Lozano D, Bullón P et al (2017) Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in major depressive disorder. Pharmacol Res 121:114–121. https://doi.org/10.1016/j.phrs.2017.04.028
doi: 10.1016/j.phrs.2017.04.028
pubmed: 28465217
Ali MY, Zaib S, Jannat S, Khan I (2021) Inhibition of angiotensin-I converting enzyme by ginsenosides: structure–activity relationships and inhibitory mechanism. J Agric Food Chem 69(21):6073–6086. https://doi.org/10.1021/acs.jafc.1c01231
doi: 10.1021/acs.jafc.1c01231
pubmed: 34014666
Asselah T, Durantel D, Pasmant E, Lau G, Schinazi RF (2021) COVID-19: discovery, diagnostics and drug development. J Hepatol 74(1):168–184. https://doi.org/10.1016/j.jhep.2020.09.031
doi: 10.1016/j.jhep.2020.09.031
pubmed: 33038433
Bach HV, Kim J, Myung SK, Cho YA (2016) Efficacy of ginseng supplements on fatigue and physical performance: a meta-analysis. J Korean Med Sci 31(12):1879–1886. https://doi.org/10.3346/jkms.2016.31.12.1879
doi: 10.3346/jkms.2016.31.12.1879
pubmed: 27822924
pmcid: 5102849
Baghai TC, Schule C, Zill P, Deiml T, Eser D, Zwanzger P et al (2004) The angiotensin I converting enzyme insertion/deletion polymorphism influences therapeutic outcome in major depressed women, but not in men. Neurosci Lett 363(1):38–42. https://doi.org/10.1016/j.neulet.2004.03.052
doi: 10.1016/j.neulet.2004.03.052
pubmed: 15157992
Bahramali E, Firouzabadi N, Yavarian I, Shayesteh MR, Erfani N, Shoushtari AA et al (2016) Influence of ACE gene on differential response to sertraline versus fluoxetine in patients with major depression: a randomized controlled trial. Eur J Clin Pharmacol 72(9):1059–1064. https://doi.org/10.1007/s00228-016-2079-0
doi: 10.1007/s00228-016-2079-0
pubmed: 27262302
Balogh DB, Molnar A, Hosszu A, Lakat T, Hodrea J, Szabo AJ et al (2020) Antidepressant effect in diabetes-associated depression: a novel potential of RAAS inhibition. Psychoneuroendocrinology 118:104705. https://doi.org/10.1016/j.psyneuen.2020.104705
doi: 10.1016/j.psyneuen.2020.104705
pubmed: 32447176
Bao L, Cai X, Wang J, Zhang Y, Sun B, Li Y (2016) Anti-fatigue effects of small molecule oligopeptides isolated from Panax ginseng C. A. Meyer in Mice. Nutrients 8(12):807
doi: 10.3390/nu8120807
pubmed: 27983571
pmcid: 5188462
Berk M, Williams LJ, Jacka FN, O’Neil A, Pasco JA, Moylan S et al (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11:200. https://doi.org/10.1186/1741-7015-11-200
doi: 10.1186/1741-7015-11-200
pubmed: 24228900
pmcid: 3846682
Beurel E, Toups M, Nemeroff CB (2020) The bidirectional relationship of depression and inflammation: double trouble. Neuron 107(2):234–256. https://doi.org/10.1016/j.neuron.2020.06.002
doi: 10.1016/j.neuron.2020.06.002
pubmed: 32553197
pmcid: 7381373
Beyerstedt S, Casaro EB, Rangel ÉB (2021) COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 40(5):905–919. https://doi.org/10.1007/s10096-020-04138-6
doi: 10.1007/s10096-020-04138-6
pubmed: 33389262
pmcid: 7778857
Cao Y, Hu Y, Liu P, Zhao HX, Zhou XJ, Wei YM (2012) Effects of a Chinese traditional formula Kai Xin San (KXS) on chronic fatigue syndrome mice induced by forced wheel running. J Ethnopharmacol 139(1):19–25. https://doi.org/10.1016/j.jep.2011.08.030
doi: 10.1016/j.jep.2011.08.030
pubmed: 21884774
Ceban F, Ling S, Lui LMW, Lee Y, Gill H, Teopiz KM et al (2022) Fatigue and cognitive impairment in post-COVID-19 syndrome: a systematic review and meta-analysis. Brain Behav Immunity. https://doi.org/10.1016/j.bbi.2021.12.020
doi: 10.1016/j.bbi.2021.12.020
Chen F, Zheng D, Liu J, Gong Y, Guan Z, Lou D (2020) Depression and anxiety among adolescents during COVID-19: a cross-sectional study. Brain Behav Immun 88:36–38. https://doi.org/10.1016/j.bbi.2020.05.061
doi: 10.1016/j.bbi.2020.05.061
pubmed: 32464156
pmcid: 7247496
Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 29(9):1109–1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
doi: 10.1111/j.1745-7254.2008.00869.x
pubmed: 18718180
Choi JH, Lee MJ, Jang M, Kim H-J, Lee S, Lee SW et al (2018) Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala. J Ginseng Res 42(1):107–115. https://doi.org/10.1016/j.jgr.2017.04.012
doi: 10.1016/j.jgr.2017.04.012
pubmed: 29348729
Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, et al (2014) Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 19(2):317–326. https://doi.org/10.1016/j.intimp.2014.01.018
doi: 10.1016/j.intimp.2014.01.018
pubmed: 24503167
Dantzer R, Heijnen CJ, Kavelaars A, Laye S, Capuron L (2014) The neuroimmune basis of fatigue. Trends Neurosci 37(1):39–46. https://doi.org/10.1016/j.tins.2013.10.003
doi: 10.1016/j.tins.2013.10.003
pubmed: 24239063
Das K, Pingali MS, Paital B, Panda F, Pati SG, Singh A et al (2021) A detailed review of the outbreak of COVID-19. Front Biosci (landmark Ed) 26(6):149–170. https://doi.org/10.52586/4931
doi: 10.52586/4931
pubmed: 34162043
de Melo LA, Almeida-Santos AF (2020) Neuropsychiatric properties of the ACE2/Ang-(1–7)/Mas pathway: a brief review. Protein Pept Lett 27(6):476–483. https://doi.org/10.2174/0929866527666191223143230
doi: 10.2174/0929866527666191223143230
pubmed: 31868143
Deng J, Zhou F, Hou W, Silver Z, Wong CY, Chang O et al (2021) The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci 1486(1):90–111. https://doi.org/10.1111/nyas.14506
doi: 10.1111/nyas.14506
pubmed: 33009668
Ding M-R, Qu Y-J, Hu B, An H-M (2022) Signal pathways in the treatment of Alzheimer's disease with traditional Chinese medicine. Biomed Pharmacother 152:113208. https://doi.org/10.1016/j.biopha.2022.113208
doi: 10.1016/j.biopha.2022.113208
pubmed: 35660246
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457. https://doi.org/10.1016/j.biopsych.2009.09.033
doi: 10.1016/j.biopsych.2009.09.033
pubmed: 20015486
Du Y, Fu M, Wang YT, Dong Z (2018) Neuroprotective Effects of Ginsenoside Rf on Amyloid-β-Induced Neurotoxicity in vitro and in vivo. J Alzheimers Dis 64(1):309–322. https://doi.org/10.3233/jad-180251
doi: 10.3233/jad-180251
pubmed: 29865080
El Sayed S, Shokry D, Gomaa SM (2021) Post-COVID-19 fatigue and anhedonia: a cross-sectional study and their correlation to post-recovery period. Neuropsychopharmacol Rep 41(1):50–55. https://doi.org/10.1002/npr2.12154
doi: 10.1002/npr2.12154
pubmed: 33332756
Faheem KBK, Sekhar K, Kunjiappan S, Jamalis J, Balaña-Fouce R et al (2020) Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg Chem 104:104269. https://doi.org/10.1016/j.bioorg.2020.104269
doi: 10.1016/j.bioorg.2020.104269
pubmed: 32947136
pmcid: 7476961
Fan C, Song Q, Wang P, Li Y, Yang M, Yu SY (2018) Neuroprotective effects of ginsenoside-Rg1 against depression-like behaviors via suppressing glial activation, synaptic deficits, and neuronal apoptosis in rats. Front Immunol 9:2889. https://doi.org/10.3389/fimmu.2018.02889
doi: 10.3389/fimmu.2018.02889
pubmed: 30581440
pmcid: 6292928
Felger JC, Haroon E, Patel TA, Goldsmith DR, Wommack EC, Woolwine BJ et al (2020) What does plasma CRP tell us about peripheral and central inflammation in depression? Mol Psychiatry 25(6):1301–1311. https://doi.org/10.1038/s41380-018-0096-3
doi: 10.1038/s41380-018-0096-3
pubmed: 29895893
Firouzabadi N, Farshadfar P, Haghnegahdar M, Alavi-Shoushtari A, Ghanbarinejad V (2022) Impact of ACE2 genetic variant on antidepressant efficacy of SSRIs. Acta Neuropsychiatr 34(1):30–36. https://doi.org/10.1017/neu.2021.32
doi: 10.1017/neu.2021.32
pubmed: 34602110
Fountain JH, Kaur J, Lappin SL (2023) Physiology, renin angiotensin system. StatPearls Publishing LLC, Treasure Island
Gelle T, Samey RA, Plansont B, Bessette B, Jauberteau-Marchan M-O, Lalloué F et al (2021) BDNF and pro-BDNF in serum and exosomes in major depression: evolution after antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 109:110229. https://doi.org/10.1016/j.pnpbp.2020.110229
doi: 10.1016/j.pnpbp.2020.110229
pubmed: 33358963
Giardina WJ, Ebert DM (1989) Positive effects of captopril in the behavioral despair swim test. Biol Psychiatry 25(6):697–702. https://doi.org/10.1016/0006-3223(89)90240-0
doi: 10.1016/0006-3223(89)90240-0
pubmed: 2647155
Glowacka I, Bertram S, Herzog P, Pfefferle S, Steffen I, Muench MO et al (2010) Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol 84(2):1198–1205. https://doi.org/10.1128/jvi.01248-09
doi: 10.1128/jvi.01248-09
pubmed: 19864379
Gong L, Yin J, Zhang Y, Huang R, Lou Y, Jiang H et al (2022) Neuroprotective mechanisms of ginsenoside Rb1 in central nervous system diseases. Front Pharmacol 13:914352. https://doi.org/10.3389/fphar.2022.914352
doi: 10.3389/fphar.2022.914352
pubmed: 35721176
pmcid: 9201244
Guo Y, Xie J, Zhang L, Yang L, Ma J, Bai Y et al (2021) Ginsenoside Rb1 exerts antidepressant-like effects via suppression inflammation and activation of AKT pathway. Neurosci Lett 744:135561. https://doi.org/10.1016/j.neulet.2020.135561
doi: 10.1016/j.neulet.2020.135561
pubmed: 33359924
Han B-C, Ahn H, Lee J, Jeon E, Seo S, Jang KH et al (2017) Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 41(4):513–523. https://doi.org/10.1016/j.jgr.2016.10.001
doi: 10.1016/j.jgr.2016.10.001
pubmed: 29021698
Han S-K, Joo M-K, Kim J-K, Jeung W, Kang H, Kim D-H (2020) Bifidobacteria-fermented red ginseng and its constituents ginsenoside Rd and protopanaxatriol alleviate anxiety/depression in mice by the amelioration of gut dysbiosis. Nutrients 12(4):901. https://doi.org/10.3390/nu12040901
doi: 10.3390/nu12040901
pubmed: 32224881
pmcid: 7230967
Han X, Wei Q, Lv Y, Weng L, Huang H, Wei Q et al (2022) Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Mol Ther 30(1):327–340. https://doi.org/10.1016/j.ymthe.2021.08.028
doi: 10.1016/j.ymthe.2021.08.028
pubmed: 34450250
Hu J-F, Song X-Y, Chu S-F, Chen J, Ji H-J, Chen X-Y et al (2011) Inhibitory effect of ginsenoside Rg1 on lipopolysaccharide-induced microglial activation in mice. Brain Res. https://doi.org/10.1016/j.brainres.2010.11.069
doi: 10.1016/j.brainres.2010.11.069
pubmed: 22189457
pmcid: 3219926
Hu B, Guo H, Zhou P, Shi ZL (2021) Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 19(3):141–154. https://doi.org/10.1038/s41579-020-00459-7
doi: 10.1038/s41579-020-00459-7
pubmed: 33024307
Huang L, Li H-J, Wu Y-C (2023) Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: a comprehensive review. Food Chem 407:134714. https://doi.org/10.1016/j.foodchem.2022.134714
doi: 10.1016/j.foodchem.2022.134714
pubmed: 36495746
Iwai M, Horiuchi M (2009) Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1–7)-Mas receptor axis. Hypertens Res 32(7):533–536. https://doi.org/10.1038/hr.2009.74
doi: 10.1038/hr.2009.74
pubmed: 19461648
pmcid: 7091931
Iwata M, Ota KT, Li X-Y, Sakaue F, Li N, Dutheil S et al (2016) Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry 80(1):12–22. https://doi.org/10.1016/j.biopsych.2015.11.026
doi: 10.1016/j.biopsych.2015.11.026
pubmed: 26831917
Jeon SW, Kim YK (2016) Molecular neurobiology and promising new treatment in depression. Int J Mol Sci 17(3):381. https://doi.org/10.3390/ijms17030381
doi: 10.3390/ijms17030381
pubmed: 26999106
pmcid: 4813239
Jeong JJ, Van Le TH, Lee SY, Eun SH, Nguyen MD, Park JH et al (2015) Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages. Int Immunopharmacol 28(1):700–706. https://doi.org/10.1016/j.intimp.2015.07.025
doi: 10.1016/j.intimp.2015.07.025
pubmed: 26256699
Jin Y, Peng J, Wang X, Zhang D, Wang T (2017) Ameliorative effect of ginsenoside rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system. Neurochem Res 42(5):1299–1307. https://doi.org/10.1007/s11064-016-2171-y
doi: 10.1007/s11064-016-2171-y
pubmed: 28078612
Jiang Y, Zhao T, Zhou X, Xiang Y, Gutierrez-Castrellon P, Ma X (2022a) Inflammatory pathways in COVID-19: mechanism and therapeutic interventions. MedComm 3(3):e154. https://doi.org/10.1002/mco2.154
doi: 10.1002/mco2.154
pubmed: 35923762
pmcid: 9340488
Jiang N, Jingwei L, Wang H, Huang H, Wang Q, Zeng G et al (2020b) Ginsenoside 20(S)-protopanaxadiol attenuates depressive-like behaviour and neuroinflammation in chronic unpredictable mild stress-induced depressive rats. Behav Brain Res 393:112710. https://doi.org/10.1016/j.bbr.2020.112710
doi: 10.1016/j.bbr.2020.112710
pubmed: 32464121
Jiang N, Zhang Y, Yao C, Huang H, Wang Q, Huang S et al (2022c) Ginsenosides Rb1 attenuates chronic social defeat stress-induced depressive behavior via regulation of SIRT1-NLRP3/Nrf2 pathways. Front Nutr 9:868833. https://doi.org/10.3389/fnut.2022.868833
doi: 10.3389/fnut.2022.868833
pubmed: 35634375
pmcid: 9133844
Jin Y, Kim Y-J, Jeon J-N, Wang C, Min J-W, Noh H-Y et al (2015) Effect of white, red and black ginseng on physicochemical properties and ginsenosides. Plant Foods Hum Nutr 70(2):141–145. https://doi.org/10.1007/s11130-015-0470-0
doi: 10.1007/s11130-015-0470-0
pubmed: 25778283
Jin Y, Pang H, Zhao L, Zhao F, Cheng Z, Liu Q et al (2022) Ginseng total saponins and Fuzi total alkaloids exert antidepressant-like effects in ovariectomized mice through BDNF-mTORC1, autophagy and peripheral metabolic pathways. Phytomedicine 107:154425. https://doi.org/10.1016/j.phymed.2022.154425
doi: 10.1016/j.phymed.2022.154425
pubmed: 36137328
Jung E-M, Lee G-S (2022) Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic. J Ginseng Res 46(3):331–336. https://doi.org/10.1016/j.jgr.2022.02.003
doi: 10.1016/j.jgr.2022.02.003
pubmed: 35194373
pmcid: 8851744
Kamal M, Abo Omirah M, Hussein A, Saeed H (2021) Assessment and characterisation of post-COVID-19 manifestations. Int J Clin Pract 75(3):e13746. https://doi.org/10.1111/ijcp.13746
doi: 10.1111/ijcp.13746
pubmed: 32991035
Kang KS, Yokozawa T, Yamabe N, Kim HY, Park JH (2007) ESR study on the structure and hydroxyl radical-scavenging activity relationships of ginsenosides isolated from Panax ginseng C A Meyer. Biol Pharm Bull 30(5):917–921
doi: 10.1248/bpb.30.917
pubmed: 17473435
Kang A, Hao H, Zheng X, Liang Y, Xie Y, Xie T et al (2011) Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy. J Neuroinflamm 8:100. https://doi.org/10.1186/1742-2094-8-100
doi: 10.1186/1742-2094-8-100
Kang A, Xie T, Zhu D, Shan J, Di L, Zheng X (2017) Suppressive effect of ginsenoside Rg3 against lipopolysaccharide-induced depression-like behavior and neuroinflammation in mice. J Agric Food Chem 65(32):6861–6869. https://doi.org/10.1021/acs.jafc.7b02386
doi: 10.1021/acs.jafc.7b02386
pubmed: 28762741
Kangussu LM, Almeida-Santos AF, Moreira FA, Fontes MAP, Santos RAS, Aguiar DC et al (2017) Reduced anxiety-like behavior in transgenic rats with chronically overproduction of angiotensin-(1–7): role of the Mas receptor. Behav Brain Res 331:193–198. https://doi.org/10.1016/j.bbr.2017.05.026
doi: 10.1016/j.bbr.2017.05.026
pubmed: 28502733
Käufer C, Schreiber CS, Hartke AS, Denden I, Stanelle-Bertram S, Beck S et al (2022) Microgliosis and neuronal proteinopathy in brain persist beyond viral clearance in SARS-CoV-2 hamster model. EBioMedicine 79:103999. https://doi.org/10.1016/j.ebiom.2022.103999
doi: 10.1016/j.ebiom.2022.103999
pubmed: 35439679
pmcid: 9013202
Khaksarinejad R, Arabpour Z, RezaKhani L, Parvizpour F, Rasmi Y (2022) Biomarker based biosensors: an opportunity for diagnosis of COVID-19. Rev Med Virol 32(5):e2356. https://doi.org/10.1002/rmv.2356
doi: 10.1002/rmv.2356
pubmed: 35478470
pmcid: 9111147
Kiefer D, Pantuso T (2003) Panax ginseng. Am Fam Phys 68(8):1539–1542
Kim J, Ahn H, Han B-C, Lee S-H, Cho Y-W, Kim CH et al (2014) Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 158(1–2):143–150. https://doi.org/10.1016/j.imlet.2013.12.017
doi: 10.1016/j.imlet.2013.12.017
pubmed: 24418475
Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS (2018) Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 42(3):239–247. https://doi.org/10.1016/j.jgr.2017.03.011
doi: 10.1016/j.jgr.2017.03.011
pubmed: 29989012
Kim M, Moon S, Jeon HS, Kim S, Koh S-H, Chang M-S et al (2022) Dual Effects of Korean red ginseng on astrocytes and neural stem cells in traumatic brain injury: the HO-1-Tom20 axis as a putative target for mitochondrial function. Cells 11(5):892. https://doi.org/10.3390/cells11050892
doi: 10.3390/cells11050892
pubmed: 35269514
pmcid: 8909112
Kohler O, Krogh J, Mors O, Benros ME (2016) Inflammation in depression and the potential for anti-inflammatory treatment. Curr Neuropharmacol 14(7):732–742
doi: 10.2174/1570159X14666151208113700
pubmed: 27640518
pmcid: 5050394
Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS et al (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 135(5):373–387. https://doi.org/10.1111/acps.12698
doi: 10.1111/acps.12698
pubmed: 28122130
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11(8):875–879
doi: 10.1038/nm1267
pubmed: 16007097
pmcid: 7095783
Kumar A, Rinwa P, Dhar H (2014) Microglial inhibitory effect of ginseng ameliorates cognitive deficits and neuroinflammation following traumatic head injury in rats. Inflammopharmacology 22(3):155–167. https://doi.org/10.1007/s10787-013-0187-3
doi: 10.1007/s10787-013-0187-3
pubmed: 24052247
Kwon KW, Kim JW, Moon S, Yoon JH, Youn S-H, Hyun SH et al (2023) Korean red ginseng relieves inflammation and modulates immune response induced by pseudo-type SARS-CoV-2. Am J Chin Med 51(6):1361–1384. https://doi.org/10.1142/S0192415X23500623
doi: 10.1142/S0192415X23500623
pubmed: 37489113
Lee B, Sur B, Oh S (2022) Neuroprotective effect of Korean Red Ginseng against single prolonged stress-induced memory impairments and inflammation in the rat brain associated with BDNF expression. J Ginseng Res 46(3):435–443. https://doi.org/10.1016/j.jgr.2021.08.002
doi: 10.1016/j.jgr.2021.08.002
pubmed: 35600771
Leonard BE (2018) Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr 30(1):1–16. https://doi.org/10.1017/neu.2016.69
doi: 10.1017/neu.2016.69
pubmed: 28112061
Leung JM, Sin DD (2020) Smoking, ACE-2 and COVID-19: ongoing controversies. Eur Respir J 56(1):2001759. https://doi.org/10.1183/13993003.01759-2020
doi: 10.1183/13993003.01759-2020
pubmed: 32430431
pmcid: 7363948
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965):450–454
doi: 10.1038/nature02145
pubmed: 14647384
pmcid: 7095016
Li D, Ren J-W, Zhang T, Liu R, Wu L, Du Q et al (2018) Anti-fatigue effects of small-molecule oligopeptides isolated from Panax quinquefolium L. in mice. Food Funct 9(8):4266–4273. https://doi.org/10.1039/c7fo01658a
doi: 10.1039/c7fo01658a
pubmed: 30027191
Li Z, Zhao L, Chen J, Liu C, Li S, Hua M et al (2020) Ginsenoside Rk1 alleviates LPS-induced depression-like behavior in mice by promoting BDNF and suppressing the neuroinflammatory response. Biochem Biophys Res Commun 530(4):658–664. https://doi.org/10.1016/j.bbrc.2020.07.098
doi: 10.1016/j.bbrc.2020.07.098
pubmed: 32768191
Li J, Gao W, Zhao Z, Li Y, Yang L, Wei W et al (2022) Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 Axis. Mol Neurobiol 59(5):2855–2873. https://doi.org/10.1007/s12035-022-02740-7
doi: 10.1007/s12035-022-02740-7
pubmed: 35230663
pmcid: 9016007
Liang W, Liu Y, Zhou K, Jian P, Zhang Q, Chang Z et al (2022) Ginsenoside Rb1 prevents lipopolysaccharide-induced depressive-like behavior by inhibiting inflammation and neural dysfunction and F2 elicits a novel antidepressant-like effect: a metabolite-based network pharmacology study. J Ethnopharmacol 282:114655. https://doi.org/10.1016/j.jep.2021.114655
doi: 10.1016/j.jep.2021.114655
pubmed: 34537284
Lin YP, Zhang MP, Wang KY, Sun CY, Wang Y (2016) Research achievements on ginsenosides biosynthesis from Panax ginseng. Zhongguo Zhong Yao Za Zhi 41(23):4292–4302. https://doi.org/10.4268/cjcmm20162302
doi: 10.4268/cjcmm20162302
pubmed: 28933103
Liu C-H, Zhang G-Z, Li B, Li M, Woelfer M, Walter M et al (2019) Role of inflammation in depression relapse. J Neuroinflammation 16(1):90. https://doi.org/10.1186/s12974-019-1475-7
doi: 10.1186/s12974-019-1475-7
pubmed: 30995920
pmcid: 6472093
Liu H, Lu X, Hu Y, Fan X (2020a) Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 161:105263. https://doi.org/10.1016/j.phrs.2020.105263
doi: 10.1016/j.phrs.2020.105263
pubmed: 33127555
Liu JJ, Wei YB, Strawbridge R, Bao Y, Chang S, Shi L et al (2020b) Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol Psychiatry 25(2):339–350. https://doi.org/10.1038/s41380-019-0474-5
doi: 10.1038/s41380-019-0474-5
pubmed: 31427752
Liu S, Zhao J, Liu Y, Li N, Wang Z, Wang X et al (2021a) High chromosomal stability and immortalized totipotency characterize long-term tissue cultures of Chinese Ginseng (Panax ginseng). Genes (basel) 12(4):514. https://doi.org/10.3390/genes12040514
doi: 10.3390/genes12040514
pubmed: 33807422
Liu Y, Zhang H, Dai X, Zhu R, Chen B, Xia B et al (2021b) A comprehensive review on the phytochemistry, pharmacokinetics, and antidiabetic effect of Ginseng. Phytomedicine 92:153717. https://doi.org/10.1016/j.phymed.2021.153717
doi: 10.1016/j.phymed.2021.153717
pubmed: 34583224
Liu YH, Wang YR, Wang QH, Chen Y, Chen X, Li Y et al (2021c) Post-infection cognitive impairments in a cohort of elderly patients with COVID-19. Mol Neurodegener 16(1):48. https://doi.org/10.1186/s13024-021-00469-w
doi: 10.1186/s13024-021-00469-w
pubmed: 34281568
pmcid: 8287105
Lu Q, Zhu Z, Tan C, Zhou H, Hu Y, Shen G et al (2021) Changes of serum IL-10, IL-1β, IL-6, MCP-1, TNF-α, IP-10 and IL-4 in COVID-19 patients. Int J Clin Pract 75(9):e14462. https://doi.org/10.1111/ijcp.14462
doi: 10.1111/ijcp.14462
pubmed: 34107113
Martin P, Massol J, Puech AJ (1990) Captopril as an antidepressant? Effects on the learned helplessness paradigm in rats. Biol Psychiatry 27(9):968–974. https://doi.org/10.1016/0006-3223(90)90034-y
doi: 10.1016/0006-3223(90)90034-y
pubmed: 2185850
Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I et al (2020) Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav Immun 89:594–600. https://doi.org/10.1016/j.bbi.2020.07.037
doi: 10.1016/j.bbi.2020.07.037
pubmed: 32738287
pmcid: 7390748
Mazza MG, Palladini M, De Lorenzo R, Magnaghi C, Poletti S, Furlan R et al (2021) Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun 94:138–147. https://doi.org/10.1016/j.bbi.2021.02.021
doi: 10.1016/j.bbi.2021.02.021
pubmed: 33639239
pmcid: 7903920
McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM et al (2020) Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med 202(6):812–821. https://doi.org/10.1164/rccm.202005-1583OC
doi: 10.1164/rccm.202005-1583OC
pubmed: 32584597
pmcid: 7491404
Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R et al (2021) Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 24(2):168–175. https://doi.org/10.1038/s41593-020-00758-5
doi: 10.1038/s41593-020-00758-5
pubmed: 33257876
Milaneschi Y, Simmons WK, van Rossum EFC, Penninx BW (2019) Depression and obesity: evidence of shared biological mechanisms. Mol Psychiatry 24(1):18–33. https://doi.org/10.1038/s41380-018-0017-5
doi: 10.1038/s41380-018-0017-5
pubmed: 29453413
Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741. https://doi.org/10.1016/j.biopsych.2008.11.029
doi: 10.1016/j.biopsych.2008.11.029
pubmed: 19150053
pmcid: 2680424
Miners S, Kehoe PG, Love S (2020) Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res Ther 12(1):170. https://doi.org/10.1186/s13195-020-00744-w
doi: 10.1186/s13195-020-00744-w
pubmed: 33380345
pmcid: 7772800
Muralidar S, Ambi SV, Sekaran S, Krishnan UM (2020) The emergence of COVID-19 as a global pandemic: understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie 179:85–100. https://doi.org/10.1016/j.biochi.2020.09.018
doi: 10.1016/j.biochi.2020.09.018
pubmed: 32971147
pmcid: 7505773
Nguyen BT, Shin EJ, Jeong JH, Sharma N, Nah SY, Ko SK et al (2022) Ginsenoside Re attenuates memory impairments in aged Klotho deficient mice via interactive modulations of angiotensin II AT1 receptor, Nrf2 and GPx-1 gene. Free Radic Biol Med 189:2–19. https://doi.org/10.1016/j.freeradbiomed.2022.07.003
doi: 10.1016/j.freeradbiomed.2022.07.003
pubmed: 35840016
Olajide OA, Iwuanyanwu VU, Lepiarz-Raba I, Al-Hindawi AA (2021) Induction of exaggerated cytokine production in human peripheral blood mononuclear cells by a recombinant SARS-CoV-2 spike glycoprotein S1 and its inhibition by dexamethasone. Inflammation 44(5):1865–1877. https://doi.org/10.1007/s10753-021-01464-5
doi: 10.1007/s10753-021-01464-5
pubmed: 33860869
Park S-M, Choi M-S, Sohn N-W, Shin J-W (2012) Ginsenoside Rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biol Pharm Bull 35(9):1546–1552
doi: 10.1248/bpb.b12-00393
pubmed: 22975507
Perry BI, Upthegrove R, Kappelmann N, Jones PB, Burgess S, Khandaker GM (2021) Associations of immunological proteins/traits with schizophrenia, major depression and bipolar disorder: a bi-directional two-sample mendelian randomization study. Brain Behav Immun 97:176–185. https://doi.org/10.1016/j.bbi.2021.07.009
doi: 10.1016/j.bbi.2021.07.009
pubmed: 34280516
pmcid: 7612947
Persson IA, Dong L, Persson K (2006) Effect of Panax ginseng extract (G115) on angiotensin-converting enzyme (ACE) activity and nitric oxide (NO) production. J Ethnopharmacol 105(3):321–325. https://doi.org/10.1016/j.jep.2005.10.030
doi: 10.1016/j.jep.2005.10.030
pubmed: 16387458
Post LA, Argaw ST, Jones C, Moss CB, Resnick D, Singh LN et al (2020) A SARS-CoV-2 surveillance system in sub-Saharan Africa: modeling study for persistence and transmission to inform policy. J Med Internet Res 22(11):e24248. https://doi.org/10.2196/24248
doi: 10.2196/24248
pubmed: 33211026
pmcid: 7683024
Price RB, Duman R (2020) Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry 25(3):530–543. https://doi.org/10.1038/s41380-019-0615-x
doi: 10.1038/s41380-019-0615-x
pubmed: 31801966
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y et al (2020) Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 71(15):762–768. https://doi.org/10.1093/cid/ciaa248
doi: 10.1093/cid/ciaa248
pubmed: 32161940
Ratajczak MZ, Bujko K, Ciechanowicz A, Sielatycka K, Cymer M, Marlicz W et al (2021) SARS-CoV-2 entry receptor ACE2 is expressed on very small CD45− precursors of hematopoietic and endothelial cells and in response to virus spike protein activates the Nlrp3 inflammasome. Stem Cell Rev Rep 17(1):266–277. https://doi.org/10.1007/s12015-020-10010-z
doi: 10.1007/s12015-020-10010-z
pubmed: 32691370
Renaud-Charest O, Lui LMW, Eskander S, Ceban F, Ho R, Di Vincenzo JD et al (2021) Onset and frequency of depression in post-COVID-19 syndrome: a systematic review. J Psychiatr Res 144:129–137. https://doi.org/10.1016/j.jpsychires.2021.09.054
doi: 10.1016/j.jpsychires.2021.09.054
pubmed: 34619491
pmcid: 8482840
Reyes AZ, Hu KA, Teperman J, Wampler Muskardin TL, Tardif J-C, Shah B et al (2021) Anti-inflammatory therapy for COVID-19 infection: the case for colchicine. Ann Rheum Dis 80(5):550–557. https://doi.org/10.1136/annrheumdis-2020-219174
doi: 10.1136/annrheumdis-2020-219174
pubmed: 33293273
Saboori S, Falahi E, Yousefi Rad E, Asbaghi O, Khosroshahi MZ (2019) Effects of ginseng on C-reactive protein level: a systematic review and meta-analysis of clinical trials. Complement Ther Med. https://doi.org/10.1016/j.ctim.2019.05.021
doi: 10.1016/j.ctim.2019.05.021
pubmed: 31331589
Santomauro DF, Herrera AM, Shadid J, Zheng P, Ashbaugh C, Pigott DM, Abbafati C, Adolph C, Amlag JO, Aravkin AY, Bang-Jensen BL (2021) Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 398(10312):1700–1712. https://doi.org/10.1016/S0140-6736(21)02143-7
doi: 10.1016/S0140-6736(21)02143-7
Schwabenland M, Salié H, Tanevski J, Killmer S, Lago MS, Schlaak AE et al (2021) Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54(7):1594–610.e11. https://doi.org/10.1016/j.immuni.2021.06.002
doi: 10.1016/j.immuni.2021.06.002
pubmed: 34174183
pmcid: 8188302
Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M et al (2020) ACE2: the major cell entry receptor for SARS-CoV-2. Lung 198(6):867–877. https://doi.org/10.1007/s00408-020-00408-4
doi: 10.1007/s00408-020-00408-4
pubmed: 33170317
pmcid: 7653219
Shahzad K, Fatima S, Khawaja H, Elwakiel A, Gadi I, Ambreen S et al (2022) Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease. Kidney Int 102(4):766–779. https://doi.org/10.1016/j.kint.2022.06.010
doi: 10.1016/j.kint.2022.06.010
pubmed: 35779608
Sharma A, Ahmad Farouk I, Lal SK (2021) COVID-19: a review on the novel coronavirus disease evolution, transmission, detection control and prevention. Viruses 13(2):202. https://doi.org/10.3390/v13020202
doi: 10.3390/v13020202
pubmed: 33572857
pmcid: 7911532
Sher L (2021) Post-COVID syndrome and suicide risk. QJM 114(2):95–98. https://doi.org/10.1093/qjmed/hcab007
doi: 10.1093/qjmed/hcab007
pubmed: 33486531
Shi DD, Huang YH, Lai CSW, Dong CM, Ho LC, Li XY et al (2019) Ginsenoside Rg1 prevents chemotherapy-induced cognitive impairment: associations with microglia-mediated cytokines, neuroinflammation, and neuroplasticity. Mol Neurobiol 56(8):5626–5642. https://doi.org/10.1007/s12035-019-1474-9
doi: 10.1007/s12035-019-1474-9
pubmed: 30659419
Shin SW, Cho IH (2023) Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; toward targeting inflammasome. J Ginseng Res 47(1):23–32. https://doi.org/10.1016/j.jgr.2022.09.004
doi: 10.1016/j.jgr.2022.09.004
pubmed: 36213093
Stefano GB, Ptacek R, Ptackova H, Martin A, Kream RM (2021) Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce “brain fog” and results in behavioral changes that favor viral survival. Med Sci Monit 27:e930886. https://doi.org/10.12659/msm.930886
doi: 10.12659/msm.930886
pubmed: 33487628
pmcid: 7845145
Su J, Su Q, Hu S, Ruan X, Ouyang S (2023) Research progress on the anti-aging potential of the active components of ginseng. Nutrients 15(15):3286. https://doi.org/10.3390/nu15153286
doi: 10.3390/nu15153286
pubmed: 37571224
pmcid: 10421173
Sun X, Wang T, Cai D, Hu Z, Chen J, Liao H et al (2020) Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev 53:38–42. https://doi.org/10.1016/j.cytogfr.2020.04.002
doi: 10.1016/j.cytogfr.2020.04.002
pubmed: 32360420
pmcid: 7182527
Syed SA, Beurel E, Loewenstein DA, Lowell JA, Craighead WE, Dunlop BW et al (2018) Defective inflammatory pathways in never-treated depressed patients are associated with poor treatment response. Neuron 99(5):914-924.e3. https://doi.org/10.1016/j.neuron.2018.08.001
doi: 10.1016/j.neuron.2018.08.001
pubmed: 30146307
pmcid: 6151182
Sykes DL, Holdsworth L, Jawad N, Gunasekera P, Morice AH, Crooks MG (2021) Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? Lung 199(2):113–119. https://doi.org/10.1007/s00408-021-00423-z
doi: 10.1007/s00408-021-00423-z
pubmed: 33569660
pmcid: 7875681
Tabacof L, Tosto-Mancuso J, Wood J, Cortes M, Kontorovich A, McCarthy D et al (2022) Post-acute COVID-19 syndrome negatively impacts physical function, cognitive function, health-related quality of life, and participation. Am J Phys Med Rehabil 101(1):48–52. https://doi.org/10.1097/phm.0000000000001910
doi: 10.1097/phm.0000000000001910
pubmed: 34686631
Tang L, Yin Z, Hu Y, Mei H (2020) Controlling cytokine storm is vital in COVID-19. Front Immunol 11:570993. https://doi.org/10.3389/fimmu.2020.570993
doi: 10.3389/fimmu.2020.570993
pubmed: 33329533
pmcid: 7734084
Tefferi A, Vannucchi AM, Barbui T (2021) Polycythemia vera: historical oversights, diagnostic details, and therapeutic views. Leukemia 35(12):3339–3351. https://doi.org/10.1038/s41375-021-01401-3
doi: 10.1038/s41375-021-01401-3
pubmed: 34480106
pmcid: 8632660
Thepmankorn P, Bach J, Lasfar A, Zhao X, Souayah S, Chong ZZ et al (2021) Cytokine storm induced by SARS-CoV-2 infection: the spectrum of its neurological manifestations. Cytokine 138:155404. https://doi.org/10.1016/j.cyto.2020.155404
doi: 10.1016/j.cyto.2020.155404
pubmed: 33360025
Tian L, Pang Z, Li M, Lou F, An X, Zhu S et al (2022) Molnupiravir and its antiviral activity against COVID-19. Front Immunol 13:855496. https://doi.org/10.3389/fimmu.2022.855496
doi: 10.3389/fimmu.2022.855496
pubmed: 35444647
pmcid: 9013824
Tsai SC, Lu CC, Bau DT, Chiu YJ, Yen YT, Hsu YM et al (2021) Approaches towards fighting the COVID-19 pandemic (Review). Int J Mol Med 47(1):3–22. https://doi.org/10.3892/ijmm.2020.4794
doi: 10.3892/ijmm.2020.4794
pubmed: 33236131
van Kessel SAM, Olde Hartman TC, Lucassen P, van Jaarsveld CHM (2022) Post-acute and long-COVID-19 symptoms in patients with mild diseases: a systematic review. Fam Pract 39(1):159–167. https://doi.org/10.1093/fampra/cmab076
doi: 10.1093/fampra/cmab076
pubmed: 34268556
Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B et al (2020) COVID-19: a promising cure for the global panic. Sci Total Environ 725:138277. https://doi.org/10.1016/j.scitotenv.2020.138277
doi: 10.1016/j.scitotenv.2020.138277
pubmed: 32278175
pmcid: 7128376
Wang L, de Kloet AD, Pati D, Hiller H, Smith JA, Pioquinto DJ et al (2016a) Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology 105:114–123. https://doi.org/10.1016/j.neuropharm.2015.12.026
doi: 10.1016/j.neuropharm.2015.12.026
pubmed: 26767952
pmcid: 4873386
Wang J, Chen Y, Dai C, Shang Y, Xie J (2016b) Ginsenoside Rh2 alleviates tumor-associated depression in a mouse model of colorectal carcinoma. Am J Transl Res 8(5):2189–2195
pubmed: 27347326
pmcid: 4891431
Wang W, Liu X, Liu J, Cai E, Zhao Y, Li H et al (2018) Sesquiterpenoids from the root of Panax ginseng attenuates lipopolysaccharide-induced depressive-like behavior through the brain-derived neurotrophic factor/tropomyosin-related kinase B and sirtuin type 1/nuclear factor-κB signaling pathways. J Agric Food Chem 66(1):265–271. https://doi.org/10.1021/acs.jafc.7b04835
doi: 10.1021/acs.jafc.7b04835
pubmed: 29237268
Wang H, Jiang N, Lv J, Huang H, Liu X (2020) Ginsenoside Rd reverses cognitive deficits by modulating BDNF-dependent CREB pathway in chronic restraint stress mice. Life Sci 258:118107. https://doi.org/10.1016/j.lfs.2020.118107
doi: 10.1016/j.lfs.2020.118107
pubmed: 32682919
Wang J, Wang D, Zhou Z, Zhang X, Zhang C, He Y et al (2021a) Saponins from Panax japonicus alleviate HFD-induced impaired behaviors through inhibiting NLRP3 inflammasome to upregulate AMPA receptors. Neurochem Int 148:105098. https://doi.org/10.1016/j.neuint.2021.105098
doi: 10.1016/j.neuint.2021.105098
pubmed: 34129896
Wang D, Shao S, Zhang Y, Zhao D, Wang M (2021b) Insight Into polysaccharides from Panax ginseng C. A. Meyer in improving intestinal inflammation: modulating intestinal microbiota and autophagy. Front Immunol 12:683911. https://doi.org/10.3389/fimmu.2021.683911
doi: 10.3389/fimmu.2021.683911
pubmed: 34354704
pmcid: 8329555
Wang Y, Han Q, Zhang S, Xing X, Sun X (2023) New perspective on the immunomodulatory activity of ginsenosides: focus on effective therapies for post-COVID-19. Biomed Pharmacother 165:115154. https://doi.org/10.1016/j.biopha.2023.115154
doi: 10.1016/j.biopha.2023.115154
pubmed: 37454595
Wu Z, Hu R, Zhang C, Ren W, Yu A, Zhou X (2020) Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients. Crit Care 24(1):290. https://doi.org/10.1186/s13054-020-03015-0
doi: 10.1186/s13054-020-03015-0
pubmed: 32503680
pmcid: 7273814
Wu JJ, Yang Y, Wan Y, Xia J, Xu JF, Zhang L et al (2022) New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer’s disease. Biomed Pharmacother 152:113207. https://doi.org/10.1016/j.biopha.2022.113207
doi: 10.1016/j.biopha.2022.113207
pubmed: 35667236
Xia C-Y, Guo Y-X, Lian W-W, Yan Y, Ma B-Z, Cheng Y-C et al (2023) The NLRP3 inflammasome in depression: potential mechanisms and therapies. Pharmacol Res 187:106625. https://doi.org/10.1016/j.phrs.2022.106625
doi: 10.1016/j.phrs.2022.106625
pubmed: 36563870
Xiong Q, Xu M, Li J, Liu Y, Zhang J, Xu Y et al (2021) Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin Microbiol Infect 27(1):89–95. https://doi.org/10.1016/j.cmi.2020.09.023
doi: 10.1016/j.cmi.2020.09.023
pubmed: 32979574
Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G (2020) SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res 21(1):182. https://doi.org/10.1186/s12931-020-01445-6
doi: 10.1186/s12931-020-01445-6
pubmed: 32664949
pmcid: 7359430
Xu X, Lu Y-N, Cheng J-H, Lan H-W, Lu J-M, Jin G-N et al (2022) Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway. J Ginseng Res 46(1):62–70. https://doi.org/10.1016/j.jgr.2021.04.003
doi: 10.1016/j.jgr.2021.04.003
pubmed: 35035240
Xu T, Shen X, Yu H, Sun L, Lin W, Zhang C (2016) Water-soluble ginseng oligosaccharides protect against scopolamine-induced cognitive impairment by functioning as an antineuroinflammatory agent. J Ginseng Res 40(3):211–219. https://doi.org/10.1016/j.jgr.2015.07.007
doi: 10.1016/j.jgr.2015.07.007
pubmed: 27635118
Yang Y, Yang WS, Yu T, Sung GH, Park KW, Yoon K et al (2014) ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. J Ethnopharmacol 154(1):218–228. https://doi.org/10.1016/j.jep.2014.04.008
doi: 10.1016/j.jep.2014.04.008
pubmed: 24735861
Yi Y-S (2022) Potential benefits of ginseng against COVID-19 by targeting inflammasomes. J Ginseng Res 46(6):722–730. https://doi.org/10.1016/j.jgr.2022.03.008
doi: 10.1016/j.jgr.2022.03.008
pubmed: 35399195
pmcid: 8979607
Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38(10):637–658. https://doi.org/10.1016/j.tins.2015.08.001
doi: 10.1016/j.tins.2015.08.001
pubmed: 26442697
Yokota S, Miyamae T, Kuroiwa Y, Nishioka K (2021) Novel coronavirus disease 2019 (COVID-19) and cytokine storms for more effective treatments from an inflammatory pathophysiology. J Clin Med 10(4):801. https://doi.org/10.3390/jcm10040801
doi: 10.3390/jcm10040801
pubmed: 33671159
pmcid: 7922214
Zajkowska Z, Gullett N, Walsh A, Zonca V, Pedersen GA, Souza L et al (2022) Cortisol and development of depression in adolescence and young adulthood—a systematic review and meta-analysis. Psychoneuroendocrinology 136:105625. https://doi.org/10.1016/j.psyneuen.2021.105625
doi: 10.1016/j.psyneuen.2021.105625
pubmed: 34920399
pmcid: 8783058
Zhan Q, Wu Y, Liu L (2022) Effects of notoginsenoside R1 on attenuating depressive behavior induced by chronic stress in rats through induction of PI3K/AKT/NF-κB pathway. Drug Dev Res 83(1):97–104. https://doi.org/10.1002/ddr.21847
doi: 10.1002/ddr.21847
pubmed: 34173680
Zhang WL, Chi YL, Wang LZ, Liu H, Zhao LX, Su F (2018) Administrations of preoperative Shenmai injection and postoperative Shenfu injection, two ginseng containing TCM formulas, improve cognitive dysfunction in aged rats. Am J Chin Med 46(5):1065–1078. https://doi.org/10.1142/s0192415x18500556
doi: 10.1142/s0192415x18500556
pubmed: 30001643
Zhang Y-Q, Wang X-B, Xue R-R, Gao X-X, Li W (2019) Ginsenoside Rg1 attenuates chronic unpredictable mild stress-induced depressive-like effect via regulating NF-κB/NLRP3 pathway in rats. NeuroReport 30(13):893–900. https://doi.org/10.1097/WNR.0000000000001302
doi: 10.1097/WNR.0000000000001302
pubmed: 31373969
Zhang H, Abid S, Ahn JC, Mathiyalagan R, Kim YJ, Yang DC et al (2020) Characteristics of Panax ginseng cultivars in Korea and China. Molecules 25(11):2635. https://doi.org/10.3390/molecules25112635
doi: 10.3390/molecules25112635
pubmed: 32517049
pmcid: 7321059
Zhang L, Tang M, Xie X, Zhao Q, Hu N, He H et al (2021) Ginsenoside Rb1 induces a pro-neurogenic microglial phenotype via PPARγ activation in male mice exposed to chronic mild stress. J Neuroinflamm 18(1):171. https://doi.org/10.1186/s12974-021-02185-0
doi: 10.1186/s12974-021-02185-0
Zhang G, Lu B, Wang E, Wang W, Li Z, Jiao L et al (2023) Panax ginseng improves physical recovery and energy utilization on chronic fatigue in rats through the PI3K/AKT/mTOR signalling pathway. Pharm Biol 61(1):316–323. https://doi.org/10.1080/13880209.2023.2169719
doi: 10.1080/13880209.2023.2169719
pubmed: 36695132
pmcid: 9879180
Zheng X, Liang Y, Kang A, Ma SJ, Xing L, Zhou YY et al (2014) Peripheral immunomodulation with ginsenoside Rg1 ameliorates neuroinflammation-induced behavioral deficits in rats. Neuroscience 256:210–222. https://doi.org/10.1016/j.neuroscience.2013.10.023
doi: 10.1016/j.neuroscience.2013.10.023
pubmed: 24161284
Zheng D, Liwinski T, Elinav E (2020) Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 6:36. https://doi.org/10.1038/s41421-020-0167-x
doi: 10.1038/s41421-020-0167-x
pubmed: 32550001
pmcid: 7280307
Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H et al (2020a) The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res 129:98–102. https://doi.org/10.1016/j.jpsychires.2020.06.022
doi: 10.1016/j.jpsychires.2020.06.022
pubmed: 32912598
pmcid: 7324344
Zhou YJ, Chen JM, Sapkota K, Long JY, Liao YJ, Jiang JJ et al (2020b) Pananx notoginseng saponins attenuate CCL2-induced cognitive deficits in rats via anti-inflammation and anti-apoptosis effects that involve suppressing over-activation of NMDA receptors. Biomed Pharmacother 127:110139. https://doi.org/10.1016/j.biopha.2020.110139
doi: 10.1016/j.biopha.2020.110139
pubmed: 32302948
Zill P, Baghai TC, Schüle C, Born C, Früstück C, Büttner A et al (2012) DNA methylation analysis of the angiotensin converting enzyme (ACE) gene in major depression. PLoS ONE 7(7):e40479. https://doi.org/10.1371/journal.pone.0040479
doi: 10.1371/journal.pone.0040479
pubmed: 22808171
pmcid: 3396656