Impacts of spatial expansion by Phragmites australis on spatiotemporal variation of sulfur fractions in marsh soils of the Min River estuary, Southeast China.

Inorganic sulfur Min River estuary Phragmites australis Spatial expansion Total sulfur

Journal

The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500

Informations de publication

Date de publication:
25 Nov 2023
Historique:
received: 10 09 2023
revised: 17 11 2023
accepted: 24 11 2023
pubmed: 28 11 2023
medline: 28 11 2023
entrez: 28 11 2023
Statut: aheadofprint

Résumé

To investigate the impacts of spatial expansion by Phragmites australis on spatiotemporal variations of sulfur (S) fractions in marsh soils of the Min River estuary (Southeast China), the contents of total sulfur (TS) and inorganic sulfur (IS) fractions (Water-Soluble-S, W-S-S; Adsorbed-S, A-S; HCl-Soluble-S, H-S-S; and HCl-Volatile-S, H-V-S) were determined in soils of Cyperus malaccensis marsh (before expansion, BE stage), P. australis-C. malaccensis marsh (during expansion, DE stage) and P. australis marsh (after expansion, AE stage) by space-for-time substitution method. Results showed that the expansion of P. australis greatly altered the spatiotemporal variations of TS and IS fractions in marsh soils. The TS contents in soils at AE stage were significantly lower than those at DE and BE stages throughout a year (p < 0.01). Higher levels of W-S-S, A-S, H-S-S and total inorganic sulfur (TIS) generally occurred in soils at DE and AE stages, whereas higher values of H-V-S were observed in soils at BE stage. Although P. australis expansion did not alter the temporal variations of TS stock in soils greatly, the values during autumn and winter were generally higher than those in spring and summer (p < 0.05). The highest TIS stocks in soils of different expansion stages were observed in spring, while the lowest values occurred in summer. The expansion of P. australis significantly increased the IS supply capacity of soils and, compared with the BE stage, stocks of W-S-S, A-S, H-S-S and TIS in soils of all sampling seasons at DE and AE stages increased by 51.40 %, 50.76 %, 63.35 %, 50.52 % and 20.00 %, 31.46 %, 42.93 %, 27.56 %, respectively. It was worth noting that stocks of H-V-S in soils at DE and AE stages showed a decreasing trend compared to the BE stage, implying that the expansion of P. australis might reduce the production of sulfides. This paper found that, compared with C. malaccensis, the increased available IS stocks in soils might be an effective strategy for P. australis to maintain its expansion advantage and the decreased volatile-S in soils might be more favorable for boosting its competitiveness. Our study provided valuable information for understanding the interspecific competition mechanism between P. australis and C. malaccensis. Next step, in order to protect the diversity of marsh vegetations in the Min River estuary, effective measures should be taken to suppress the rapid expansion of P. australis.

Identifiants

pubmed: 38013101
pii: S0048-9697(23)07539-3
doi: 10.1016/j.scitotenv.2023.168910
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

168910

Informations de copyright

Copyright © 2023 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Huihui Wu (H)

Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China.

Zhigao Sun (Z)

Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China. Electronic address: zhigaosun@163.com.

Hua Wang (H)

Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China.

Bingbing Chen (B)

Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China; College of Tourism, Resources and Environment, Zaozhuang University, Zaozhuang 277000, People's Republic of China.

Xingyun Hu (X)

Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, People's Republic of China; Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University), Ministry of Education, Fuzhou 350007, People's Republic of China.

Xinhua Li (X)

Yellow River Delta Modern Agriculture Research Center, Dongying 257000, People's Republic of China.

Classifications MeSH