The two synthetic cannabinoid compounds 4'-F-CBD and HU-910 efficiently restrain inflammatory responses of brain microglia and astrocytes.

astrocytes microglia neuroinflammation oxidative stress synthetic cannabinoids

Journal

Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785

Informations de publication

Date de publication:
28 Nov 2023
Historique:
revised: 23 10 2023
received: 26 06 2023
accepted: 31 10 2023
medline: 28 11 2023
pubmed: 28 11 2023
entrez: 28 11 2023
Statut: aheadofprint

Résumé

To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1β in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 μM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.

Identifiants

pubmed: 38013496
doi: 10.1002/glia.24489
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : ANR project LOCAI
ID : ANR-21-FAI2-0004
Organisme : Capes-Cofecub program
ID : Me928/19
Organisme : FAPESP BEPE grant
ID : (2018/03482-0
Organisme : FAPESP post-doctoral fellowship
ID : 2017/14207-7
Organisme : Program Investissements d'Avenir
ID : ANR-10-IAIHU-06
Organisme : Translational Research Infrastructure for Biotherapies in Neurosciences
ID : ANR-11-INBS-0011 NeurATRIS

Informations de copyright

© 2023 The Authors. Glia published by Wiley Periodicals LLC.

Références

Aguirre-Rueda, D., Guerra-Ojeda, S., Aldasoro, M., Iradi, A., Obrador, E., Mauricio, M. D., Vila, J. M., Marchio, P., & Valles, S. L. (2015). WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid beta1-42 effects on astrocytes in primary culture. PLoS One, 10(4), e0122843. https://doi.org/10.1371/journal.pone.0122843
Agurell, S., Carlsson, S., Lindgren, J. E., Ohlsson, A., Gillespie, H., & Hollister, L. (1981). Interactions of delta 1-tetrahydrocannabinol with cannabinol and cannabidiol following oral administration in man. Assay of cannabinol and cannabidiol by mass fragmentography. Experientia, 37(10), 1090-1092.
Batalla, A., Bos, J., Postma, A., & Bossong, M. G. (2020). The impact of cannabidiol on human brain function: A systematic review. Frontiers in Pharmacology, 11, 618184. https://doi.org/10.3389/fphar.2020.618184
Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1), 245-313. https://doi.org/10.1152/physrev.00044.2005
Borges, R. S., Batista, J., Jr., Viana, R. B., Baetas, A. C., Orestes, E., Andrade, M. A., Honório, K., & da Silva, A. (2013). Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants. Molecules, 18(10), 12663-12674. https://doi.org/10.3390/molecules181012663
Bow, E. W., & Rimoldi, J. M. (2016). The structure-function relationships of classical cannabinoids: CB1/CB2 modulation. Perspectives in Medicinal Chemistry, 8, 17-39. https://doi.org/10.4137/PMC.S32171
Breuer, A., Haj, C. G., Fogaca, M. V., Gomes, F. V., Silva, N. R., Pedrazzi, J. F., del Bel, E. A., Hallak, J. C., Crippa, J. A., Zuardi, A. W., Mechoulam, R., & Guimarães, F. S. (2016). Fluorinated cannabidiol derivatives: Enhancement of activity in mice models predictive of anxiolytic, antidepressant and antipsychotic effects. PLoS One, 11(7), e0158779. https://doi.org/10.1371/journal.pone.0158779
Britch, S. C., Babalonis, S., & Walsh, S. L. (2021). Cannabidiol: Pharmacology and therapeutic targets. Psychopharmacology, 238(1), 9-28. https://doi.org/10.1007/s00213-020-05712-8
Campos, A. C., Fogaca, M. V., Sonego, A. B., & Guimaraes, F. S. (2016). Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacological Research, 112, 119-127. https://doi.org/10.1016/j.phrs.2016.01.033
Chen, H., Liu, Y., Yu, S., Li, C., Gao, B., & Zhou, X. (2023). Cannabidiol attenuates periodontal inflammation through inhibiting TLR4/NF-kappaB pathway. Journal of Periodontal Research, 58, 697-707. https://doi.org/10.1111/jre.13118
Doring, C., Regen, T., Gertig, U., van Rossum, D., Winkler, A., Saiepour, N., Brück, W., Hanisch, U. K., & Janova, H. (2017). A presumed antagonistic LPS identifies distinct functional organization of TLR4 in mouse microglia. Glia, 65(7), 1176-1185. https://doi.org/10.1002/glia.23151
Dos Santos Pereira, M., Abreu, G. H. D., Rocca, J., Hamadat, S., Raisman-Vozari, R., Michel, P. P., & Del Bel, E. (2020). Contributive role of TNF-alpha to L-DOPA-induced dyskinesia in a unilateral 6-OHDA lesion model of Parkinson's disease. Frontiers in Pharmacology, 11, 617085. https://doi.org/10.3389/fphar.2020.617085
Dos-Santos-Pereira, M., Acuna, L., Hamadat, S., Rocca, J., Gonzalez-Lizarraga, F., Chehin, R., Sepulveda-Diaz, J., Del-Bel, E., Raisman-Vozari, R., & Michel, P. P. (2018). Microglial glutamate release evoked by alpha-synuclein aggregates is prevented by dopamine. Glia, 66(11), 2353-2365. https://doi.org/10.1002/glia.23472
Dos-Santos-Pereira, M., da Silva, C. A., Guimaraes, F. S., & Del-Bel, E. (2016). Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiology of Disease, 94, 179-195. https://doi.org/10.1016/j.nbd.2016.06.013
Dos-Santos-Pereira, M., Guimaraes, F. S., Del-Bel, E., Raisman-Vozari, R., & Michel, P. P. (2020). Cannabidiol prevents LPS-induced microglial inflammation by inhibiting ROS/NF-kappaB-dependent signaling and glucose consumption. Glia, 68(3), 561-573. https://doi.org/10.1002/glia.23738
Egana-Huguet, J., Soria-Gomez, E., & Grandes, P. (2021). The endocannabinoid system in glial cells and their profitable interactions to treat epilepsy: Evidence from animal models. International Journal of Molecular Sciences, 22(24), 13231. https://doi.org/10.3390/ijms222413231
Eraso-Pichot, A., Pouvreau, S., Olivera-Pinto, A., Gomez-Sotres, P., Skupio, U., & Marsicano, G. (2023). Endocannabinoid signaling in astrocytes. Glia, 71(1), 44-59. https://doi.org/10.1002/glia.24246
Esposito, G., Scuderi, C., Valenza, M., Togna, G. I., Latina, V., de Filippis, D., Cipriano, M., Carratù, M. R., Iuvone, T., & Steardo, L. (2011). Cannabidiol reduces Abeta-induced neuroinflammation and promotes hippocampal neurogenesis through PPARgamma involvement. PLoS One, 6(12), e28668. https://doi.org/10.1371/journal.pone.0028668
Facchinetti, F., Del Giudice, E., Furegato, S., Passarotto, M., & Leon, A. (2003). Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide. Glia, 41(2), 161-168. https://doi.org/10.1002/glia.10177
Farhoosh, R., Johnny, S., Asnaashari, M., Molaahmadibahraseman, N., & Sharif, A. (2016). Structure-antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chemistry, 194, 128-134. https://doi.org/10.1016/j.foodchem.2015.08.003
Garcia-Gutierrez, M. S., Navarrete, F., Gasparyan, A., Austrich-Olivares, A., Sala, F., & Manzanares, J. (2020). Cannabidiol: A potential new alternative for the treatment of anxiety, depression, and psychotic disorders. Biomolecules, 10(11), 1575. https://doi.org/10.3390/biom10111575
Gilhus, N. E., & Deuschl, G. (2019). Neuroinflammation - A common thread in neurological disorders. Nature Reviews. Neurology, 15(8), 429-430. https://doi.org/10.1038/s41582-019-0227-8
Gloire, G., Legrand-Poels, S., & Piette, J. (2006). NF-kappaB activation by reactive oxygen species: Fifteen years later. Biochemical Pharmacology, 72(11), 1493-1505. https://doi.org/10.1016/j.bcp.2006.04.011
Gray, R. A., & Whalley, B. J. (2020). The proposed mechanisms of action of CBD in epilepsy. Epileptic Disorders, 22(S1), 10-15. https://doi.org/10.1684/epd.2020.1135
Hanus, L. O., Meyer, S. M., Munoz, E., Taglialatela-Scafati, O., & Appendino, G. (2016). Phytocannabinoids: A unified critical inventory. Natural Product Reports, 33(12), 1357-1392. https://doi.org/10.1039/c6np00074f
Henshaw, F. R., Dewsbury, L. S., Lim, C. K., & Steiner, G. Z. (2021). The effects of cannabinoids on pro- and anti-inflammatory cytokines: A systematic review of in vivo studies. Cannabis and Cannabinoid Research, 6(3), 177-195. https://doi.org/10.1089/can.2020.0105
Horvath, B., Magid, L., Mukhopadhyay, P., Batkai, S., Rajesh, M., Park, O., Tanchian, G., Gao, R. Y., Goodfellow, C. E., Glass, M., Mechoulam, R., & Pacher, P. (2012). A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury. British Journal of Pharmacology, 165(8), 2462-2478. https://doi.org/10.1111/j.1476-5381.2011.01381.x
Izzo, A. A., Borrelli, F., Capasso, R., Di Marzo, V., & Mechoulam, R. (2009). Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends in Pharmacological Sciences, 30(10), 515-527. https://doi.org/10.1016/j.tips.2009.07.006
Kaur, A., Piplani, S., Kaushik, D., Fung, J., Sakala, I. G., Honda-Okubo, Y., Mehta, S. K., Petrovsky, N., & Salunke, D. B. (2022). Stereoisomeric Pam(2)CS based TLR2 agonists: Synthesis, structural modelling and activity as vaccine adjuvants. RSC Medicinal Chemistry, 13(5), 622-637. https://doi.org/10.1039/d1md00372k
Kelley, N., Jeltema, D., Duan, Y., & He, Y. (2019). The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Sciences, 20(13), 3328. https://doi.org/10.3390/ijms20133328
Krzyzewska, A., Baranowska-Kuczko, M., Jastrzab, A., Kasacka, I., & Kozlowska, H. (2022). Cannabidiol improves antioxidant capacity and reduces inflammation in the lungs of rats with monocrotaline-induced pulmonary hypertension. Molecules, 27(10), 3327. https://doi.org/10.3390/molecules27103327
Kuret, T., Kreft, M. E., Romih, R., & Veranic, P. (2023). Cannabidiol as a promising therapeutic option in IC/BPS: In vitro evaluation of its protective effects against inflammation and oxidative stress. International Journal of Molecular Sciences, 24(5), 5055. https://doi.org/10.3390/ijms24055055
Landucci, E., Mazzantini, C., Lana, D., Calvani, M., Magni, G., Giovannini, M. G., & Pellegrini-Giampietro, D. E. (2022). Cannabidiol inhibits microglia activation and mitigates neuronal damage induced by kainate in an in-vitro seizure model. Neurobiology of Disease, 174, 105895. https://doi.org/10.1016/j.nbd.2022.105895
Li, H., Liu, Y., Tian, D., Tian, L., Ju, X., Qi, L., Wang, Y., & Liang, C. (2020). Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer's disease. European Journal of Medicinal Chemistry, 192, 112163. https://doi.org/10.1016/j.ejmech.2020.112163
Li, L., Acioglu, C., Heary, R. F., & Elkabes, S. (2021). Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain, Behavior, and Immunity, 91, 740-755. https://doi.org/10.1016/j.bbi.2020.10.007
Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., … Barres, B. A. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541, 481-487. https://doi.org/10.1038/nature21029
Lively, S., & Schlichter, L. C. (2018). Microglia responses to pro-inflammatory stimuli (LPS, IFNgamma+TNFalpha) and reprogramming by resolving cytokines (IL-4, IL-10). Frontiers in Cellular Neuroscience, 12, 215. https://doi.org/10.3389/fncel.2018.00215
Lowin, T., Tingting, R., Zurmahr, J., Classen, T., Schneider, M., & Pongratz, G. (2020). Cannabidiol (CBD): A killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death & Disease, 11(8), 714. https://doi.org/10.1038/s41419-020-02892-1
Lunn, C. A., Reich, E. P., & Bober, L. (2006). Targeting the CB2 receptor for immune modulation. Expert Opinion on Therapeutic Targets, 10(5), 653-663. https://doi.org/10.1517/14728222.10.5.653
Mahmoud, S., Gharagozloo, M., Simard, C., & Gris, D. (2019). Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells, 8(2), 184. https://doi.org/10.3390/cells8020184
Mechoulam, R., & Parker, L. A. (2013). The endocannabinoid system and the brain. Annual Review of Psychology, 64, 21-47. https://doi.org/10.1146/annurev-psych-113011-143739
Meyer, E., Rieder, P., Gobbo, D., Candido, G., Scheller, A., de Oliveira, R. M. W., & Kirchhoff, F. (2022). Cannabidiol exerts a neuroprotective and glia-balancing effect in the subacute phase of stroke. International Journal of Molecular Sciences, 23(21), 12886. https://doi.org/10.3390/ijms232112886
Morales, P., Reggio, P. H., & Jagerovic, N. (2017). An overview on medicinal chemistry of synthetic and natural derivatives of cannabidiol. Frontiers in Pharmacology, 8, 422. https://doi.org/10.3389/fphar.2017.00422
O'Sullivan, S. E. (2016). An update on PPAR activation by cannabinoids. British Journal of Pharmacology, 173(12), 1899-1910. https://doi.org/10.1111/bph.13497
Perez, M., Cartarozzi, L. P., Chiarotto, G. B., Oliveira, S. A., Guimaraes, F. S., & Oliveira, A. L. R. (2018). Neuronal preservation and reactive gliosis attenuation following neonatal sciatic nerve axotomy by a fluorinated cannabidiol derivative. Neuropharmacology, 140, 201-208. https://doi.org/10.1016/j.neuropharm.2018.08.009
Pertwee, R. G. (2009). Emerging strategies for exploiting cannabinoid receptor agonists as medicines. British Journal of Pharmacology, 156(3), 397-411. https://doi.org/10.1111/j.1476-5381.2008.00048.x
Pietr, M., Kozela, E., Levy, R., Rimmerman, N., Lin, Y. H., Stella, N., Vogel, Z., & Juknat, A. (2009). Differential changes in GPR55 during microglial cell activation. FEBS Letters, 583(12), 2071-2076. https://doi.org/10.1016/j.febslet.2009.05.028
Rock, E. M., & Parker, L. A. (2017). Chapter 72 - The role of 5-HT1A receptor, and nausea and vomiting relief by cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabigerol (CBG). In Handbook of cannabis and related pathologies (p. 9). Academic Press. https://doi.org/10.1016/B978-0-12-800756-3.00083-1
Rodgers, K. R., Lin, Y., Langan, T. J., Iwakura, Y., & Chou, R. C. (2020). Innate immune functions of astrocytes are dependent upon tumor necrosis factor-alpha. Scientific Reports, 10(1), 7047. https://doi.org/10.1038/s41598-020-63766-2
Saliba, S. W., Glaser, F., Deckers, A., Keil, A., Hurrle, T., Apweiler, M., Ferver, F., Volz, N., Endres, D., Bräse, S., & Fiebich, B. L. (2021). Effects of a novel GPR55 antagonist on the arachidonic acid cascade in LPS-activated primary microglial cells. International Journal of Molecular Sciences, 22(5), 2503. https://doi.org/10.3390/ijms22052503
Saliba, S. W., Jauch, H., Gargouri, B., Keil, A., Hurrle, T., Volz, N., Mohr, F., van der Stelt, M., Bräse, S., & Fiebich, B. L. (2018). Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells. Journal of Neuroinflammation, 15(1), 322. https://doi.org/10.1186/s12974-018-1362-7
Santa-Cecilia, F. V., Socias, B., Ouidja, M. O., Sepulveda-Diaz, J. E., Acuna, L., Silva, R. L., Michel, P. P., Del-Bel, E., Cunha, T. M., & Raisman-Vozari, R. (2016). Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotoxicity Research, 29(4), 447-459. https://doi.org/10.1007/s12640-015-9592-2
Seargent, J. M., Yates, E. A., & Gill, J. H. (2004). GW9662, a potent antagonist of PPARgamma, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARgamma agonist rosiglitazone, independently of PPARgamma activation. British Journal of Pharmacology, 143(8), 933-937. https://doi.org/10.1038/sj.bjp.0705973
Sepulveda-Diaz, J. E., Ouidja, M. O., Socias, S. B., Hamadat, S., Guerreiro, S., Raisman-Vozari, R., & Michel, P. P. (2016). A simplified approach for efficient isolation of functional microglial cells: Application for modeling neuroinflammatory responses in vitro. Glia, 64(11), 1912-1924. https://doi.org/10.1002/glia.23032
Sharir, H., & Abood, M. E. (2010). Pharmacological characterization of GPR55, a putative cannabinoid receptor. Pharmacology & Therapeutics, 126(3), 301-313. https://doi.org/10.1016/j.pharmthera.2010.02.004
Silva, N. R., Gomes, F. I. F., Lopes, A. H. P., Cortez, I. L., Dos Santos, J. C., Silva, C. E. A., Mechoulam, R., Gomes, F. V., Cunha, T. M., & Guimarães, F. S. (2022). The cannabidiol analog PECS-101 prevents chemotherapy-induced neuropathic pain via PPARgamma receptors. Neurotherapeutics, 19(1), 434-449. https://doi.org/10.1007/s13311-021-01164-w
Silva, N. R., Gomes, F. V., Fonseca, M. D., Mechoulam, R., Breuer, A., Cunha, T. M., & Guimaraes, F. S. (2017). Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 79, 369-377. https://doi.org/10.1016/j.pnpbp.2017.07.012
Sink, K. S., Segovia, K. N., Collins, L. E., Markus, E. J., Vemuri, V. K., Makriyannis, A., & Salamone, J. D. (2010). The CB1 inverse agonist AM251, but not the CB1 antagonist AM4113, enhances retention of contextual fear conditioning in rats. Pharmacology, Biochemistry, and Behavior, 95(4), 479-484. https://doi.org/10.1016/j.pbb.2010.03.011
Stefanska, J., & Pawliczak, R. (2008). Apocynin: Molecular aptitudes. Mediators of Inflammation, 2008, 106507. https://doi.org/10.1155/2008/106507
Stella, N. (2010). Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia, 58(9), 1017-1030. https://doi.org/10.1002/glia.20983
Tahir, M. N., Shahbazi, F., Rondeau-Gagne, S., & Trant, J. F. (2021). The biosynthesis of the cannabinoids. Journal of Cannabis Research, 3(1), 7. https://doi.org/10.1186/s42238-021-00062-4
Takeuchi, H., Jin, S., Wang, J., Zhang, G., Kawanokuchi, J., Kuno, R., Sonobe, Y., Mizuno, T., & Suzumura, A. (2006). Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. The Journal of Biological Chemistry, 281(30), 21362-21368. https://doi.org/10.1074/jbc.M600504200
Tarassishin, L., Suh, H. S., & Lee, S. C. (2014). LPS and IL-1 differentially activate mouse and human astrocytes: Role of CD14. Glia, 62, 999-1013. https://doi.org/10.1002/glia.22657
Yang, S., Du, Y., Zhao, X., Tang, Q., Su, W., Hu, Y., & Yu, P. (2022). Cannabidiol enhances microglial beta-amyloid peptide phagocytosis and clearance via vanilloid family type 2 channel activation. International Journal of Molecular Sciences, 23(10), 5367. https://doi.org/10.3390/ijms23105367
Ye, Z. C., & Sontheimer, H. (1998). Astrocytes protect neurons from neurotoxic injury by serum glutamate. Glia, 22(3), 237-248. https://doi.org/10.1002/(sici)1098-1136(199803)22:3<237::aid-glia3>3.0.co;2-2
Young, M. T., Pelegrin, P., & Surprenant, A. (2007). Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Molecular Pharmacology, 71(1), 92-100. https://doi.org/10.1124/mol.106.030163
Zhang, Y., Sloan, S. A., Clarke, L. E., Caneda, C., Plaza, C. A., Blumenthal, P. D., Vogel, H., Steinberg, G. K., Edwards, M. S., Li, G., Duncan, J. A., 3rd, Cheshier, S. H., Shuer, L. M., Chang, E. F., Grant, G. A., Gephart, M. G., & Barres, B. A. (2016). Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron, 89(1), 37-53. https://doi.org/10.1016/j.neuron.2015.11.013

Auteurs

Maurício Dos Santos Pereira (M)

Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.
Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France.

Bruna Maitan Santos (B)

Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.
Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France.

Rocio Gimenez (R)

Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France.
IREN Center, National Technological University, Buenos Aires, Argentina.

Francisco Silveira Guimarães (FS)

Pharmacology Department, FMRP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.

Rita Raisman-Vozari (R)

Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France.

Elaine Del Bel (E)

Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.

Patrick Pierre Michel (PP)

Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France.

Classifications MeSH