Cortical gray to white matter signal intensity ratio as a sign of neurodegeneration and cognition independent of β-amyloid in dementia.

GWR cognitive decline dementia imaging biomarker β-amyloid

Journal

Human brain mapping
ISSN: 1097-0193
Titre abrégé: Hum Brain Mapp
Pays: United States
ID NLM: 9419065

Informations de publication

Date de publication:
27 Nov 2023
Historique:
revised: 28 09 2023
received: 09 10 2022
accepted: 19 10 2023
medline: 28 11 2023
pubmed: 28 11 2023
entrez: 28 11 2023
Statut: aheadofprint

Résumé

Cortical gray to white matter signal intensity ratio (GWR) measured from T1-weighted magnetic resonance (MR) images was associated with neurodegeneration and dementia. We characterized topological patterns of GWR during AD pathogenesis and investigated its association with cognitive decline. The study included a cross-sectional dataset and a longitudinal dataset. The cross-sectional dataset included 60 cognitively healthy controls, 61 mild cognitive impairment (MCI), and 63 patients with dementia. The longitudinal dataset included 26 participants who progressed from cognitively normal to dementia and 26 controls that remained cognitively normal. GWR was compared across the cross-sectional groups, adjusted for amyloid PET. The correlation between GWR and cognition performance was also evaluated. The longitudinal dataset was used to investigate GWR alteration during the AD pathogenesis. Dementia with β-amyloid deposition group exhibited the largest area of increased GWR, followed by MCI with β-amyloid deposition, MCI without β-amyloid deposition, and controls. The spatial pattern of GWR-increased regions was not influenced by β-amyloid deposits. Correlation between regional GWR alteration and cognitive decline was only detected among individuals with β-amyloid deposition. GWR showed positive correlation with tau PET in the left supramarginal, lateral occipital gyrus, and right middle frontal cortex. The longitudinal study showed that GWR increased around the fusiform, inferior/superior temporal lobe, and entorhinal cortex in MCI and progressed to larger cortical regions after progression to AD. The spatial pattern of GWR-increased regions was independent of β-amyloid deposits but overlapped with tauopathy. The GWR can serve as a promising biomarker of neurodegeneration in AD.

Identifiants

pubmed: 38013633
doi: 10.1002/hbm.26532
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIH HHS
ID : U01 AG024904
Pays : United States

Informations de copyright

© 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Références

Apostolova, L. G., Mosconi, L., Thompson, P. M., Green, A. E., Hwang, K. S., Ramirez, A., Mistur, R., Tsui, W. H., & de Leon, M. J. (2010). Subregional hippocampal atrophy predicts Alzheimer's dementia in the cognitively normal. Neurobiology of Aging, 31, 1077-1088. https://doi.org/10.1016/j.neurobiolaging.2008.08.008
Carmichael, O. T., Lopez, O., Becker, J. T., & Kuller, L. (2009). Trajectories of brain loss in aging and the development of cognitive impairment. Neurology, 72, 771; author reply 771-772-772. https://doi.org/10.1212/01.wnl.0000339386.26096.93
Deleglise, B., Magnifico, S., Duplus, E., Vaur, P., Soubeyre, V., Belle, M., Vignes, M., Viovy, J.-L., Jacotot, E., Peyrin, J.-M., & Brugg, B. (2014). β-Amyloid induces a dying-back process and remote trans-synaptic alterations in a microfluidic-based reconstructed neuronal network. Acta Neuropathologica Communications, 2, 145. https://doi.org/10.1186/s40478-014-0145-3
Doré, V., Villemagne, V. L., Bourgeat, P., Fripp, J., Acosta, O., Chetélat, G., Zhou, L., Martins, R., Ellis, K. A., Masters, C. L., Ames, D., Salvado, O., & Rowe, C. C. (2013). Cross-sectional and longitudinal analysis of the relationship between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease. JAMA Neurology, 70, 903-911. https://doi.org/10.1001/jamaneurol.2013.1062
Fang, R., Wang, G., Huang, Y., Zhuang, J.-P., Tang, H.-D., Wang, Y., Deng, Y.-L., Xu, W., Chen, S.-D., & Ren, R.-J. (2014). Validation of the Chinese version of Addenbrooke's cognitive examination-revised for screening mild Alzheimer's disease and mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 37, 223-231. https://doi.org/10.1159/000353541
Greve, D. N., & Fischl, B. (2018). False positive rates in surface-based anatomical analysis. NeuroImage, 171, 6-14. https://doi.org/10.1016/j.neuroimage.2017.12.072
Grøntvedt, G. R., Schröder, T. N., Sando, S. B., White, L., Bråthen, G., & Doeller, C. F. (2018). Alzheimer's disease. Current Biology, 28, R645-R649. https://doi.org/10.1016/j.cub.2018.04.080
Grydeland, H., Westlye, L. T., Walhovd, K. B., & Fjell, A. M. (2013). Improved prediction of Alzheimer's disease with longitudinal white matter/gray matter contrast changes. Human Brain Mapping, 34, 2775-2785. https://doi.org/10.1002/hbm.22103
Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., & Sperling, R. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14, 535-562. https://doi.org/10.1016/j.jalz.2018.02.018
Jack, C. R., Shiung, M. M., Weigand, S. D., O'Brien, P. C., Gunter, J. L., Boeve, B. F., Knopman, D. S., Smith, G. E., Ivnik, R. J., Tangalos, E. G., & Petersen, R. C. (2005). Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology, 65, 1227-1231. https://doi.org/10.1212/01.wnl.0000180958.22678.91
Jang, I., Li, B., Riphagen, J. M., Dickerson, B. C., & Salat, D. H. (2022). Multiscale structural mapping of Alzheimer's disease neurodegeneration. Neuroimage: Clinical, 33, 102948. https://doi.org/10.1016/j.nicl.2022.102948
Jefferson, A. L., Gifford, K. A., Damon, S., Chapman, G. W., Liu, D., Sparling, J., Dobromyslin, V., Salat, D., & Alzheimer's Disease Neuroimaging Initiative. (2015). Gray & white matter tissue contrast differentiates mild cognitive impairment converters from non-converters. Brain Imaging and Behavior, 9, 141-148. https://doi.org/10.1007/s11682-014-9291-2
Katzman, R., Zhang, M. Y., Qu, O., Wang, Z. Y., Liu, W. T., Yu, E., Wong, S. C., Salmon, D. P., & Grant, I. (1988). A Chinese version of the Mini-Mental State Examination; impact of illiteracy in a Shanghai dementia survey. Journal of Clinical Epidemiology, 41, 971-978. https://doi.org/10.1016/0895-4356(88)90034-0
Kim, D. M., Xanthakos, S. A., Tupler, L. A., Barboriak, D. P., Charles, H. C., MacFall, J. R., & Krishnan, K. R. R. (2002). MR signal intensity of gray matter/white matter contrast and intracranial fat: Effects of age and sex. Psychiatry Research, 114, 149-161. https://doi.org/10.1016/s0925-4927(02)00024-0
Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C., Aisen, P. S., Weiner, M. W., Jagust, W. J., & Alzheimer's Disease Neuroimaging Initiative. (2012). Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Annals of Neurology, 72, 578-586. https://doi.org/10.1002/ana.23650
Li, B., Jang, I., Riphagen, J., Almaktoum, R., Yochim, K. M., Ances, B. M., Bookheimer, S. Y., Salat, D. H., & Alzheimer's Disease Neuroimaging, I. (2021). Identifying individuals with Alzheimer's disease-like brains based on structural imaging in the Human Connectome Project Aging cohort. Human Brain Mapping, 42, 5535-5546. https://doi.org/10.1002/hbm.25626
Li, B., Zhang, M., Jang, I., Ye, G., Zhou, L., He, G., Lin, X., Meng, H., Huang, X., Hai, W., Chen, S., Li, B., & Liu, J. (2021). Amyloid-Beta influences memory via functional connectivity during memory retrieval in Alzheimer's disease. Frontiers in Aging Neuroscience, 13, 721171. https://doi.org/10.3389/fnagi.2021.721171
Li, B., Zhang, M., Riphagen, J., Morrison Yochim, K., Li, B., Liu, J., Salat, D. H., & Alzheimer's Disease Neuroimaging, I. (2020). Prediction of clinical and biomarker conformed Alzheimer's disease and mild cognitive impairment from multi-feature brain structural MRI using age-correction from a large independent lifespan sample. Neuroimage: Clinical, 28, 102387. https://doi.org/10.1016/j.nicl.2020.102387
Putcha, D., Katsumi, Y., Brickhouse, M., Flaherty, R., Salat, D. H., Touroutoglou, A., & Dickerson, B. C. (2023). Gray to white matter signal ratio as a novel biomarker of neurodegeneration in Alzheimer's disease. NeuroImage: Clinical, 37, 103303. https://doi.org/10.1016/j.nicl.2022.103303
Roberts, R. O., Aakre, J. A., Kremers, W. K., Vassilaki, M., Knopman, D. S., Mielke, M. M., Alhurani, R., Geda, Y. E., Machulda, M. M., Coloma, P., Schauble, B., Lowe, V. J., Jack, C. R., & Petersen, R. C. (2018). Prevalence and outcomes of amyloid positivity among persons without dementia in a longitudinal, population-based setting. JAMA Neurology, 75, 970-979. https://doi.org/10.1001/jamaneurol.2018.0629
Salat, D. H., Chen, J. J., van der Kouwe, A. J., Greve, D. N., Fischl, B., & Rosas, H. D. (2011). Hippocampal degeneration is associated with temporal and limbic gray matter/white matter tissue contrast in Alzheimer's disease. NeuroImage, 54, 1795-1802. https://doi.org/10.1016/j.neuroimage.2010.10.034
Salat, D. H., Lee, S. Y., van der Kouwe, A. J., Greve, D. N., Fischl, B., & Rosas, H. D. (2009). Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. NeuroImage, 48, 21-28. https://doi.org/10.1016/j.neuroimage.2009.06.074
Scheff, S. W., Price, D. A., Schmitt, F. A., DeKosky, S. T., & Mufson, E. J. (2007). Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology, 68, 1501-1508. https://doi.org/10.1212/01.wnl.0000260698.46517.8f
Scheltens, P., Leys, D., Barkhof, F., Huglo, D., Weinstein, H. C., Vermersch, P., Kuiper, M., Steinling, M., Wolters, E. C., & Valk, J. (1992). Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: Diagnostic value and neuropsychological correlates. Journal of Neurology, Neurosurgery, and Psychiatry, 55, 967-972. https://doi.org/10.1136/jnnp.55.10.967
Smith, C. D., Chebrolu, H., Wekstein, D. R., Schmitt, F. A., Jicha, G. A., Cooper, G., & Markesbery, W. R. (2007). Brain structural alterations before mild cognitive impairment. Neurology, 68, 1268-1273. https://doi.org/10.1212/01.wnl.0000259542.54830.34
Terry, R. D. (2000). Cell death or synaptic loss in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 59, 1118-1119. https://doi.org/10.1093/jnen/59.12.1118
Vermunt, L., Sikkes, S. A. M., van den Hout, A., Handels, R., Bos, I., van der Flier, W. M., Kern, S., Ousset, P.-J., Maruff, P., Skoog, I., Verhey, F. R. J., Freund-Levi, Y., Tsolaki, M., Wallin, Å. K., Olde Rikkert, M., Soininen, H., Spiru, L., Zetterberg, H., Blennow, K., … ICTUS/DSA study groups. (2019). Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype. Alzheimer's & Dementia, 15, 888-898. https://doi.org/10.1016/j.jalz.2019.04.001
Westlye, L. T., Walhovd, K. B., Dale, A. M., Espeseth, T., Reinvang, I., Raz, N., Agartz, I., Greve, D. N., Fischl, B., & Fjell, A. M. (2009). Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: A multi-sample MRI study. NeuroImage, 47, 1545-1557. https://doi.org/10.1016/j.neuroimage.2009.05.084

Auteurs

Xiaomeng Xu (X)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Ikbeom Jang (I)

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin, South Korea.

Junfang Zhang (J)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Miao Zhang (M)

Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Lijun Wang (L)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Guanyu Ye (G)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Aonan Zhao (A)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Yichi Zhang (Y)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Biao Li (B)

Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Jun Liu (J)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Binyin Li (B)

Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Classifications MeSH