Supramolecular peptide nanotubes as artificial enzymes for catalysing ester hydrolysis.
Journal
Polymer chemistry
ISSN: 1759-9954
Titre abrégé: Polym Chem
Pays: England
ID NLM: 101562526
Informations de publication
Date de publication:
24 Oct 2023
24 Oct 2023
Historique:
received:
31
08
2023
accepted:
04
09
2023
medline:
28
11
2023
pubmed:
28
11
2023
entrez:
28
11
2023
Statut:
epublish
Résumé
Peptide-based artificial enzymes are attracting significant interest because of their remarkable resemblance in both composition and structure to native enzymes. Herein, we report the construction of histidine-containing cyclic peptide-based supramolecular polymeric nanotubes to function as artificial enzymes for ester hydrolysis. The optimized catalyst shows a
Identifiants
pubmed: 38013987
doi: 10.1039/d3py00993a
pii: d3py00993a
pmc: PMC10594401
doi:
Types de publication
Journal Article
Langues
eng
Pagination
4712-4718Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
There are no conflicts to declare.
Références
Chem Rev. 1996 Mar 28;96(2):721-758
pubmed: 11848771
Chem Soc Rev. 2013 Jul 21;42(14):6060-93
pubmed: 23740388
ACS Macro Lett. 2021 Feb 16;10(2):258-271
pubmed: 35570781
Nature. 2001 Jul 26;412(6845):452-5
pubmed: 11473322
J Colloid Interface Sci. 2022 Jul 15;618:98-110
pubmed: 35334366
Curr Opin Struct Biol. 2018 Aug;51:19-27
pubmed: 29518619
Biochem J. 1956 Aug;63(4):656-61
pubmed: 13355866
Chem Rev. 2021 Nov 24;121(22):13936-13995
pubmed: 33938738
Angew Chem Int Ed Engl. 2010 May 25;49(23):3920-4
pubmed: 20480500
J Pept Res. 1999 May;53(5):530-41
pubmed: 10424348
J Am Chem Soc. 2007 Oct 10;129(40):12082-3
pubmed: 17854188
Org Biomol Chem. 2015 Feb 28;13(8):2464-73
pubmed: 25566760
Cell Mol Life Sci. 2005 Oct;62(19-20):2161-72
pubmed: 16003488
Chem Soc Rev. 2012 Sep 21;41(18):6023-41
pubmed: 22875035
Nanoscale. 2019 Feb 21;11(8):3521-3526
pubmed: 30742173
Biomacromolecules. 2018 Jan 8;19(1):239-247
pubmed: 29156128
Sci Adv. 2020 Apr 01;6(14):eaaz0404
pubmed: 32270041
Chem Sci. 2021 Jun 3;12(26):9096-9103
pubmed: 34276939
J Am Chem Soc. 2012 May 23;134(20):8396-9
pubmed: 22559143
Med Res Rev. 2020 Mar;40(2):753-810
pubmed: 31599007
Org Biomol Chem. 2018 Aug 8;16(31):5580-5584
pubmed: 30051894
J Mater Chem B. 2013 May 7;1(17):2297-2304
pubmed: 32260883
Biochemistry. 2001 May 15;40(19):5682-90
pubmed: 11341833
Chem Soc Rev. 2010 May;39(5):1448-56
pubmed: 20419200
Chemistry. 2014 Sep 26;20(40):12745-9
pubmed: 25146103
Nat Chem. 2010 Aug;2(8):615-21
pubmed: 20651721
Acc Chem Res. 2013 Dec 17;46(12):2955-65
pubmed: 23898935
Angew Chem Int Ed Engl. 2020 Jun 2;59(23):8860-8863
pubmed: 32045099
Chem Soc Rev. 2019 Feb 18;48(4):1004-1076
pubmed: 30534770
Chem Commun (Camb). 2015 Aug 28;51(67):13213-6
pubmed: 26194473
J Mater Chem B. 2016 Jul 14;4(26):4605-4611
pubmed: 32263403
Chem Commun (Camb). 2017 Jul 18;53(58):8110-8113
pubmed: 28630961
Nature. 1993 Nov 25;366(6453):324-7
pubmed: 8247126
ACS Appl Bio Mater. 2018 Nov 19;1(5):1717-1724
pubmed: 34996220
ACS Appl Mater Interfaces. 2016 Jun 8;8(22):14133-41
pubmed: 27191381
J Am Chem Soc. 2004 Sep 1;126(34):10556-7
pubmed: 15327310
Chemistry. 2016 Jun 13;22(25):8404-30
pubmed: 27062126
ACS Nano. 2014 Nov 25;8(11):11715-23
pubmed: 25375351
Angew Chem Int Ed Engl. 2005 May 20;44(21):3297-301
pubmed: 15830332
Chem Soc Rev. 2012 Dec 7;41(23):7890-908
pubmed: 22972005
Chem Soc Rev. 2018 May 21;47(10):3621-3639
pubmed: 29594277
J Am Chem Soc. 2021 Jan 13;143(1):382-389
pubmed: 33348987
J Mater Chem B. 2018 Apr 28;6(16):2444-2449
pubmed: 32254461
Biochem J. 1957 Nov;67(3):481-6
pubmed: 13479408
J Am Chem Soc. 1970 Feb 25;92(4):1075-7
pubmed: 5451011
Org Biomol Chem. 2017 May 31;15(21):4490-4505
pubmed: 28375421
Nat Catal. 2019 Nov;2(11):977-985
pubmed: 31742246
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):18817-18822
pubmed: 31573708
Chem Sci. 2019 Apr 18;10(21):5476-5483
pubmed: 31293730