Phenotypic and genomic insights into the pathogenicity and antimicrobial resistance of an Enterobacter roggenkampii strain isolated from diseased silver arowana (Osteoglossum bicirrhosum).
Enterobacter roggenkampii
drug resistance genes
silver arowana
virulence genes
whole genome sequencing
Journal
Journal of fish diseases
ISSN: 1365-2761
Titre abrégé: J Fish Dis
Pays: England
ID NLM: 9881188
Informations de publication
Date de publication:
28 Nov 2023
28 Nov 2023
Historique:
revised:
14
11
2023
received:
30
08
2023
accepted:
17
11
2023
medline:
28
11
2023
pubmed:
28
11
2023
entrez:
28
11
2023
Statut:
aheadofprint
Résumé
Enterobacter roggenkampii is an opportunistic pathogen that causes infections in a wide range of hosts. A bacterial strain named EOBSR_19 was isolated from diseased silver arowana, Osteoglossum bicirrhosum. This bacterium was identified as E. roggenkampii based on the phenotypic characteristics and sequence analysis of the16S rDNA and gyrB genes. Average nucleotide identity and phylogenetic analysis based on the whole genome sequence further confirmed the bacterial taxonomy of EOBSR_19. Artificial experimental infection indicated that EOBSR_19 was pathogenic to fish. Antimicrobial susceptibility test showed it was multi-drug resistant. The EOBSR_19 was found to be resistant to 18 antibiotics belonging to quinolones, macrolides, sulfonamides, aminoglycosides, and β-lactams classes. The whole genome sequencing analysis showed that EOBSR_19 carried 730 virulence genes that were annotated for different functional modules, such as adhesion and invasion, secretion system, siderophore transport system and bacterial toxin. Among them, the virulence genes related to adhesion and invasion were the most abundant. In addition, drug resistance genes involved in multiple mechanisms of antimicrobial resistance were identified in its genomics, including multidrug resistance efflux pumps, antibiotic inactivating enzymes, and antibiotic binding site mutations. Its genomic analysis via whole-genome sequencing provided insights into the pathogenicity and antimicrobial resistance.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Andersen, J. L., He, G. X., Kakarla, P., Kanchan, R., Kumar, S., Lakra, W. S., Mukherjee, M. M., Ranaweera, I., Shrestha, U., Tran, T., & Varela, M. F. (2015). Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. International Journal of Environmental Research and Public Health, 12(2), 1487-1547. https://doi.org/10.3390/ijerph120201487
Ardui, S., Ameur, A., Vermeesch, J. R., & Hestand, M. S. (2018). Single molecule real-time (SMRT) sequencing comes of age: Applications and utilities for medical diagnostics. Nucleic Acids Research, 46(5), 2159-2168. https://doi.org/10.1093/nar/gky066
Ashrafi, R., Bruneaux, M., Sundberg, L. R., Pulkkinen, K., Valkonen, J., & Ketola, T. (2018). Broad thermal tolerance is negatively correlated with virulence in an opportunistic bacterial pathogen. Evolutionary Applications, 11(9), 1700-1714. https://doi.org/10.1111/eva.12673
Babouee Flury, B., Ellington, M. J., Hopkins, K. L., Turton, J. F., Doumith, M., Loy, R., Staves, P., Hinic, V., Frei, R., & Woodford, N. (2016). Association of novel nonsynonymous single nucleotide polymorphisms in ampD with cephalosporin resistance and phylogenetic variations in ampC, ampR, ompF, and ompC in Enterobacter cloacae isolates that are highly resistant to carbapenems. Antimicrobial Agents and Chemotherapy, 60(4), 2383-2390. https://doi.org/10.1128/AAC.02835-15
Barnhart, M. M., & Chapman, M. R. (2006). Curli biogenesis and function. Annual Review of Microbiology, 60, 131-147. https://doi.org/10.1146/annurev.micro.60.080805.142106
Bolourchi, N., Giske, C. G., Nematzadeh, S., Mirzaie, A., Abhari, S. S., Solgi, H., & Badmasti, F. (2022). Comparative resistome and virulome analysis of clinical NDM-1-producing carbapenem-resistant Enterobacter cloacae complex. Journal of Global Antimicrobial Resistance, 28, 254-263. https://doi.org/10.1016/j.jgar.2022.01.021
Brenner, D. J., & Farmer, J. J. (2015). Enterobacteriaceae. Bergey’s Manual of Systematics of Archaea and Bacteria, 1-24. https://doi.org/10.1002/9781118960608.fbm00222
Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59-60. https://doi.org/10.1038/nmeth.3176
Cain, B. D., Norton, P. J., Eubanks, W., Nick, H. S., & Allen, C. M. (1993). Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. Journal of Bacteriology, 175(12), 3784-3789. https://doi.org/10.1128/jb.175.12.3784-3789.1993
Chauhan, S., Noor, J., Yegneswaran, B., & Kodali, H. (2016). Enterobacter meningitis and challenges in treatment. Journal of Clinical and Diagnostic Research, 10(12), OD10-OD11. https://doi.org/10.7860/JCDR/2016/20759.9081
Choi, T. Y., Choi, T. I., Lee, Y. R., Choe, S. K., & Kim, C. H. (2021). Zebrafish as an animal model for biomedical research. Experimental & Molecular Medicine, 53(3), 310-317. https://doi.org/10.1038/s12276-021-00571-5
Chow, D. W. Y., Westermeyer, H. D., Fernando, N., Hoey, S., & Dubielzig, R. R. (2016). Unilateral ventral strabismus in an aquarium Silver Arowana (Osteoglossum bicirrhosum). Veterinary Ophthalmology, 19(6), 510-517. https://doi.org/10.1111/vop.12320
Costas-Ferreira, C., Durán, R., & Faro, L. R. F. (2022). Toxic effects of glyphosate on the nervous system: A systematic review. International Journal of Molecular Sciences, 23(9), 4605. https://doi.org/10.3390/ijms23094605
Dauga, C. (2002). Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: A model molecule for molecular systematic studies. International Journal of Systematic and Evolutionary Microbiology, 52(Pt 2), 531-547. https://doi.org/10.1099/00207713-52-2-531
de Jesus da Silva, T., Hrbek, T., & Farias, I. P. (2009). Microsatellite markers for the silver arowana (Osteoglossum bicirrhosum, Osteoglossidae, Osteoglossiformes). Molecular Ecology Resources, 9(3), 1019-1022. https://doi.org/10.1111/j.1755-0998.2009.02556.x
den Reijer, P. M., Haisma, E. M., Lemmens-den Toom, N. A., Willemse, J., Koning, R. I., Koning, R. A., Demmers, J. A. A., Dekkers, D. H. W., Rijkers, E., El Ghalbzouri, A., Nibbering, P. H., & van Wamel, W. (2016). Detection of alpha-toxin and other virulence factors in biofilms of Staphylococcus aureus on polystyrene and a human epidermal model. PLoS One, 11(1), e0145722. https://doi.org/10.1371/journal.pone.0145722
Eichinger, V., Nussbaumer, T., Platzer, A., Jehl, M. A., Arnold, R., & Rattei, T. (2016). EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Research, 44(D1), D669-D674. https://doi.org/10.1093/nar/gkv1269
Enne, V. I., King, A., Livermore, D. M., & Hall, L. M. C. (2002). Sulfonamide resistance in Haemophilus influenzae mediated by acquisition of sul2 or a short insertion in chromosomal folP. Antimicrobial Agents and Chemotherapy, 46(6), 1934-1939. https://doi.org/10.1128/AAC.46.6.1934-1939.2002
Feng, Y., Hu, Y., & Zong, Z. (2021). Reexamining the association of AmpC variants with Enterobacter species in the context of updated taxonomy. Antimicrobial Agents and Chemotherapy, 65(12), e01596-21. https://doi.org/10.1128/AAC.01596-21
Finney, D. J. (1985). The median lethal dose and its estimation. Archives of Toxicology, 56(4), 215-218. https://doi.org/10.1007/BF00295156
Francino, M. P., Santos, S. R., & Ochman, H. (2006). Phylogenetic relationships of bacteria with special reference to endosymbionts and enteric species. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes: A handbook on the biology of bacteria volume 6: Proteobacteria: Gamma subclass (pp. 41-59). Springer. https://doi.org/10.1007/0-387-30746-X_2
Fu, S., Ni, P., Yang, Q., Hu, H., Wang, Q., Ye, S., & Liu, Y. (2021). Delineating the key virulence factors and intraspecies divergence of Vibrio harveyi via whole-genome sequencing. Canadian Journal of Microbiology, 67(3), 231-248. https://doi.org/10.1139/cjm-2020-0079
Fukushima, M., Kakinuma, K., & Kawaguchi, R. (2002). Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. Journal of Clinical Microbiology, 40(8), 2779-2785. https://doi.org/10.1128/JCM.40.8.2779-2785.2002
Fukuzawa, S., Sato, T., Aoki, K., Yamamoto, S., Ogasawara, N., Nakajima, C., Suzuki, Y., Horiuchi, M., Takahashi, S., & Yokota, S.-I. (2023). High prevalence of colistin heteroresistance in specific species and lineages of Enterobacter cloacae complex derived from human clinical specimens. Annals of Clinical Microbiology and Antimicrobials, 22(1), 60. https://doi.org/10.1186/s12941-023-00610-1
Ganbold, M., Seo, J., Wi, Y. M., Kwon, K. T., & Ko, K. S. (2023). Species identification, antibiotic resistance, and virulence in Enterobacter cloacae complex clinical isolates from South Korea. Frontiers in Microbiology, 14, 1122691. https://doi.org/10.3389/fmicb.2023.1122691
Gao, X., Wang, C., Lv, L., He, X., Cai, Z., He, W., Li, T., & Liu, J. H. (2022). Emergence of a novel plasmid-mediated tigecycline resistance gene cluster, tmexCD4-toprJ4, in Klebsiella quasipneumoniae and Enterobacter roggenkampii. Microbiology Spectrum, 10(4), e0109422. https://doi.org/10.1128/spectrum.01094-22
Girlich, D., Ouzani, S., Emeraud, C., Gauthier, L., Bonnin, R. A., Le Sache, N., Mokhtari, M., Langlois, I., Begasse, C., Arangia, N., Fournier, S., Fortineau, N., Naas, T., & Dortet, L. (2021). Uncovering the novel Enterobacter cloacae complex species responsible for septic shock deaths in newborns: A cohort study. The Lancet Microbe, 2(10), e536-e544. https://doi.org/10.1016/S2666-5247(21)00098-7
Guo, D. J., Singh, R. K., Singh, P., Li, D. P., Sharma, A., Xing, Y. X., Song, X. P., Yang, L. T., & Li, Y. R. (2020). Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Frontiers in Microbiology, 11, 580081. https://doi.org/10.3389/fmicb.2020.580081
Hauben, L., Moore, E. R., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L., & Swings, J. (1998). Phylogenetic position of phytopathogens within the Enterobacteriaceae. Systematic and Applied Microbiology, 21(3), 384-397. https://doi.org/10.1016/S0723-2020(98)80048-9
Hocquet, D., Vogne, C., El Garch, F., Vejux, A., Gotoh, N., Lee, A., Lomovskaya, O., & Plésiat, P. (2003). MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrobial Agents and Chemotherapy, 47(4), 1371-1375. https://doi.org/10.1128/AAC.47.4.1371-1375.2003
Hsiao, W., Wan, I., Jones, S. J., & Brinkman, F. S. L. (2003). IslandPath: Aiding detection of genomic islands in prokaryotes. Bioinformatics, 19(3), 418-420. https://doi.org/10.1093/bioinformatics/btg004
Hu, X., Liu, X., Lü, A., & Sun, J. (2019). Characterization and pathology of Aeromonas veronii biovar sobria from diseased sheatfish Silurus glanis in China. The Israeli Journal of Aquaculture, 71, 11. https://doi.org/10.46989/001c.20989
Ito, R., Mustapha, M. M., Tomich, A. D., Callaghan, J. D., McElheny, C. L., Mettus, R. T., Shanks, R. M. Q., Sluis-Cremer, N., & Doi, Y. (2017). Widespread fosfomycin resistance in Gram-negative bacteria attributable to the chromosomal fosA gene. MBio, 8(4), e00749-17. https://doi.org/10.1128/mBio.00749-17
Ji, Y., Wang, P., Xu, T., Zhou, Y., Chen, R., Zhu, H., & Zhou, K. (2021). Development of a one-step multiplex PCR assay for differential detection of four species (Enterobacter cloacae, Enterobacter hormaechei, Enterobacter roggenkampii, and Enterobacter kobei) belonging to Enterobacter cloacae complex with clinical significance. Frontiers in Cellular and Infection Microbiology, 11, 677089. https://doi.org/10.3389/fcimb.2021.677089
Karasahin, O., Yildiz, Z., Unal, O., & Arslan, U. (2018). A rare cause of healthcare-associated infective endocarditis: Enterobacter cloacae. IDCases, 12, 18-20. https://doi.org/10.1016/j.idcr.2018.03.004
Kho, C. J. Y., Lau, M. M. L., Chung, H. H., Chew, I. Y. Y., & Gan, H. M. (2023). Whole-genome sequencing of Pseudomonas koreensis isolated from diseased tor tambroides. Current Microbiology, 80(8), 255. https://doi.org/10.1007/s00284-023-03354-5
Kinnula, H., Mappes, J., Valkonen, J. K., Pulkkinen, K., & Sundberg, L. R. (2017). Higher resource level promotes virulence in an environmentally transmitted bacterial fish pathogen. Evolutionary Applications, 10(5), 462-470. https://doi.org/10.1111/eva.12466
Kinnula, H., Mappes, J., Valkonen, J. K., & Sundberg, L. R. (2015). The influence of infective dose on the virulence of a generalist pathogen in rainbow trout (Oncorhynchus mykiss) and zebra fish (Danio rerio). PLoS One, 10(9), e0139378. https://doi.org/10.1371/journal.pone.0139378
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 27(5), 722-736. https://doi.org/10.1101/gr.215087.116
Kwong, J. C., McCallum, N., Sintchenko, V., & Howden, B. P. (2015). Whole genome sequencing in clinical and public health microbiology. Pathology, 47(3), 199-210. https://doi.org/10.1097/PAT.0000000000000235
Landraud, L., Gibert, M., Popoff, M. R., Boquet, P., & Gauthier, M. (2003). Expression of cnf1 by Escherichia coli J96 involves a large upstream DNA region including the hlyCABD operon, and is regulated by the RfaH protein. Molecular Microbiology, 47(6), 1653-1667. https://doi.org/10.1046/j.1365-2958.2003.03391.x
Lei, C. W., Zhang, Y., Wang, Y. T., & Wang, H. N. (2020). Detection of mobile colistin resistance gene mcr-10.1 in a conjugative plasmid from Enterobacter roggenkampii of chicken origin in China. Antimicrobial Agents and Chemotherapy, 64(10), e01191-20. https://doi.org/10.1128/AAC.01191-20
Lemos, J. R. G., Santos, M. Q. C., Araújo, C. S. O., Andrade, S. M. S., & Viana, G. M. (2012). Parasitological evaluation and body indices of Osteoglossum bicirrhosum (Vandelli, 1829) traded in a fair of Manaus, Amazonas, Brazil. Journal of FisheriesSciences.com, 6, 263-270. https://doi.org/10.3153/jfscom.2012030
Li, X. Z., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical Microbiology Reviews, 28(2), 337-418. https://doi.org/10.1128/CMR.00117-14
Liu, J., Li, G. M., Lin, L. Y., Wu, X. L., Huang, S. L., Zhou, Y., & Zhao, Z. G. (2016). Association of antibiotic resistance with SHV-12 extended-spectrum β-lactamase in Enterobacter cloacae. Experimental and Therapeutic Medicine, 11(1), 269-276. https://doi.org/10.3892/etm.2015.2851
Liu, R., Lian, Z., Hu, X., Lü, A., Sun, J., Chen, C., Liu, X., Song, Y., & Yiksung, Y. (2019). First report of Vibrio vulnificus infection in grass carp Ctenopharyngodon idellus in China. Aquaculture, 499, 283-289. https://doi.org/10.1016/j.aquaculture.2018.09.051
Liu, W. Y., Wong, C. F., Chung, K. M. K., Jiang, J. W., & Leung, F. C. C. (2013). Comparative genome analysis of Enterobacter cloacae. PLoS One, 8(9), e74487. https://doi.org/10.1371/journal.pone.0074487
Ma, C., & Chang, G. (2007). Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3668. https://doi.org/10.1073/pnas.0700711104
Masuda, N., Sakagawa, E., Ohya, S., Gotoh, N., Tsujimoto, H., & Nishino, T. (2000). Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 44(12), 3322-3327. https://doi.org/10.1128/AAC.44.12.3322-3327.2000
Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L., & Göker, M. (2022). TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research, 50(D1), D801-D807. https://doi.org/10.1093/nar/gkab902
Meier-Kolthoff, J. P., & Göker, M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nature Communications, 10(1), 2182. https://doi.org/10.1038/s41467-019-10210-3
Mustafa, A., Ibrahim, M., Rasheed, M. A., Kanwal, S., Hussain, A., Sami, A., Ahmed, R., & Bo, Z. (2020). Genome-wide analysis of four Enterobacter cloacae complex type strains: Insights into virulence and niche adaptation. Scientific Reports, 10(1), 8150. https://doi.org/10.1038/s41598-020-65001-4
Naskar, S., Hohl, M., Tassinari, M., & Low, H. H. (2021). The structure and mechanism of the bacterial type II secretion system. Molecular Microbiology, 115(3), 412-424. https://doi.org/10.1111/mmi.14664
Naum, M., Brown, E. W., & Mason-Gamer, R. J. (2008). Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the Enterobacteriaceae? Journal of Molecular Evolution, 66(6), 630-642. https://doi.org/10.1007/s00239-008-9115-3
Neely, M. N., Pfeifer, J. D., & Caparon, M. (2002). Streptococcus-zebrafish model of bacterial pathogenesis. Infection and Immunity, 70(7), 3904-3914. https://doi.org/10.1128/IAI.70.7.3904-3914.2002
Nuccio, S. P., & Bäumler, A. J. (2007). Evolution of the chaperone/usher assembly pathway: Fimbrial classification goes Greek. Microbiology and Molecular Biology Reviews, 71(4), 551-575. https://doi.org/10.1128/MMBR.00014-07
Octavia, S., & Lan, R. (2014). The family Enterobacteriaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes (pp. 225-286). Springer. https://doi.org/10.1007/978-3-642-38922-1_167
Okhravi, N., Ficker, L., Matheson, M. M., & Lightman, S. (1998). Enterobacter cloacae endophthalmitis: Report of four cases. Journal of Clinical Microbiology, 36(1), 48-51. https://doi.org/10.1128/JCM.36.1.48-51.1998
Pizarro-Cerdá, J., & Cossart, P. (2006). Bacterial adhesion and entry into host cells. Cell, 124(4), 715-727. https://doi.org/10.1016/j.cell.2006.02.012
Pornsukarom, S., van Vliet, A. H. M., & Thakur, S. (2018). Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genomics, 19(1), 801. https://doi.org/10.1186/s12864-018-5137-4
Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309-318. https://doi.org/10.1179/2047773215Y.0000000030
Queipo-Ortuño, M. I., De Dios Colmenero, J., Macias, M., Bravo, M. J., & Morata, P. (2008). Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clinical and Vaccine Immunology, 15(2), 293-296. https://doi.org/10.1128/cvi.00270-07
Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug Resistance Updates, 13(6), 151-171. https://doi.org/10.1016/j.drup.2010.08.003
Saini, A. G., Rathore, V., Ahuja, C. K., Chhabra, R., Vaidya, P. C., & Singhi, P. (2017). Multiple brain abscesses due to Enterobacter cloacae in an immune-competent child. Journal of Infection and Public Health, 10(5), 674-677. https://doi.org/10.1016/j.jiph.2017.03.008
Sarangi, J., Matsuo, N., Nonogaki, R., Hayashi, M., Kawamura, K., Suzuki, M., Jin, W., Tamai, K., Ogawa, M., Wachino, J.-I., Kimura, K., Yagi, T., & Arakawa, Y. (2022). Molecular epidemiology of Enterobacter cloacae complex isolates with reduced carbapenem susceptibility recovered by blood culture. Japanese Journal of Infectious Diseases, 75(1), 41-48. https://doi.org/10.7883/yoken.JJID.2021.141
Sargent, F. (2007). Constructing the wonders of the bacterial world: Biosynthesis of complex enzymes. Microbiology, 153(Pt 3), 633-651. https://doi.org/10.1099/mic.0.2006/004762-0
Sato, T., Usui, M., Harada, K., Fukushima, Y., Nakajima, C., Suzuki, Y., & Yokota, S. I. (2021). Complete genome sequence of an mcr-10-possessing Enterobacter roggenkampii strain isolated from a dog in Japan. Microbiology Resource Announcements, 10(30), e0042621. https://doi.org/10.1128/MRA.00426-21
Shastry, R. P., Welch, M., Rai, V. R., Ghate, S. D., Sandeep, K., & Rekha, P. D. (2020). The whole-genome sequence analysis of Enterobacter cloacae strain Ghats1: insights into endophytic lifestyle-associated genomic adaptations. Archives of Microbiology, 202(6), 1571-1579. https://doi.org/10.1007/s00203-020-01848-5
Sheng, T., Song, G., Yue, T., Zhang, J., Wang, W., Yang, Z., & Lu, Q. (2021). Whole-genome sequencing and antimicrobial resistance analysis of multidrug-resistant Aeromonas veronii strain JC529 from a common carp. Journal of Global Antimicrobial Resistance, 27, 118-122. https://doi.org/10.1016/j.jgar.2021.08.007
Shi, X. Y., Zhou, W. L., Jia, W. P., Hao, S., Zhang, Z. G., Luo, Z., & Feng, S. M. (2018). Isolation and identification of pathogen from Osteoglossum bicirrhosum with gill rot disease. Journal of Anhui Agricultural Sciences, 46(15), 75-78. https://doi.org/10.13989/j.cnki.0517-6611.2018.15.023
Singh, R. P., Nalwaya, S., & Jha, P. N. (2017). The draft genome sequence of the plant growth promoting rhizospheric bacterium Enterobacter cloacae SBP-8. Genomics Data, 12, 81-83. https://doi.org/10.1016/j.gdata.2017.03.006
Souza Lopes, A. C., Rodrigues, J. F., Cabral, A. B., da Silva, M. E., Leal, N. C., da Silveira, V. M., & de Morais Júnior, M. A. (2016). Occurrence and analysis of irp2 virulence gene in isolates of Klebsiella pneumoniae and Enterobacter spp. from microbiota and hospital and community-acquired infections. Microbial Pathogenesis, 96, 15-19. https://doi.org/10.1016/j.micpath.2016.04.018
Sprague, J., Clements, D., Conlin, T., Edwards, P., Frazer, K., Schaper, K., Segerdell, E., Song, P., Sprunger, B., & Westerfield, M. (2003). The zebrafish information network (ZFIN): The zebrafish model organism database. Nucleic Acids Research, 31(1), 241-243. https://doi.org/10.1093/nar/gkg027
Spröer, C., Mendrock, U., Swiderski, J., Lang, E., & Stackebrandt, E. (1999). The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae. International Journal of Systematic Bacteriology, 49(Pt 4), 1433-1438. https://doi.org/10.1099/00207713-49-4-1433
Srivastava, S., & Bhargava, A. (2016). Biofilms and human health. Biotechnology Letters, 38(1), 1-22. https://doi.org/10.1007/s10529-015-1960-8
Sutton, G. G., Brinkac, L. M., Clarke, T. H., & Fouts, D. E. (2018). Enterobacter hormaechei subsp. hoffmannii subsp. nov., Enterobacter hormaechei subsp. xiangfangensis comb. nov., Enterobacter roggenkampii sp. nov., and Enterobacter muelleri is a later heterotypic synonym of Enterobacter asburiae based on computational analysis of sequenced Enterobacter genomes. F1000Research, 7, 521. https://doi.org/10.12688/f1000research.14566.2
Swick, M. C., Morgan-Linnell, S. K., Carlson, K. M., & Zechiedrich, L. (2011). Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrobial Agents and Chemotherapy, 55(2), 921-924. https://doi.org/10.1128/AAC.00996-10
Tagini, F., & Greub, G. (2017). Bacterial genome sequencing in clinical microbiology: A pathogen-oriented review. European Journal of Clinical Microbiology & Infectious Diseases, 36(11), 2007-2020. https://doi.org/10.1007/s10096-017-3024-6
Tailliez, P., Laroui, C., Ginibre, N., Paule, A., Pagès, S., & Boemare, N. (2010). Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 8), 1921-1937. https://doi.org/10.1099/ijs.0.014308-0
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
Tapia-Tussell, R., Lappe, P., Ulloa, M., Quijano-Ramayo, A., Cáceres-Farfán, M., Larqué-Saavedra, A., & Perez-Brito, D. (2006). A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes. Molecular Biotechnology, 33(1), 67-70. https://doi.org/10.1385/MB:33:1:67
Taylor, N. G. H., Verner-Jeffreys, D. W., & Baker-Austin, C. (2011). Aquatic systems: Maintaining, mixing and mobilising antimicrobial resistance? Trends in Ecology & Evolution, 26(6), 278-284. https://doi.org/10.1016/j.tree.2011.03.004
Tyagi, A., Sharma, C., Srivastava, A., Naveen Kumar, B. T., Pathak, D., & Rai, S. (2022). Isolation, characterization and complete genome sequencing of fish pathogenic Aeromonas veronii from diseased Labeo rohita. Aquaculture, 553, 738085. https://doi.org/10.1016/j.aquaculture.2022.738085
Umeda, K., Nakamura, H., Fukuda, A., Matsumoto, Y., Motooka, D., Nakamura, S., Yasui, Y., Yoshida, H., & Kawahara, R. (2021). Genomic characterization of clinical Enterobacter roggenkampii co-harbouring bla- and bla-encoding IncP6 and mcr-9-encoding IncHI2 plasmids isolated in JapanIMP-1-GES-5. Journal of Global Antimicrobial Resistance, 24, 220-227. https://doi.org/10.1016/j.jgar.2020.11.028
Varello, K., Prearo, M., Burioli, E. A. V., Pastorino, P., Mugetti, D., Meistro, S., Righetti, M., & Bozzetta, E. (2019). Mycobacterium fortuitum infection in silver arowana (Osteoglossum bicirrhosum). Bulletin of the European Association of Fish Pathologists, 39, 83-88.
Verba, J. T., Neto, J. G. R., Zuanon, J., & Farias, I. (2014). Evidence of multiple paternity and cooperative parental care in the so called monogamous silver arowana Osteoglossum bicirrhosum (Osteoglossiformes: Osteoglossidae). Neotropical Ichthyology, 12, 145-151. https://doi.org/10.1590/S1679-62252014000100015
Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9(11), e112963. https://doi.org/10.1371/journal.pone.0112963
Wang, C., Feng, Y., Liu, L., Wei, L., Kang, M., & Zong, Z. (2020). Identification of novel mobile colistin resistance gene mcr-10. Emerging Microbes & Infections, 9(1), 508-516. https://doi.org/10.1080/22221751.2020.1732231
Wang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17(17), 6278. https://doi.org/10.3390/ijerph17176278
Wessels, M. R. (2019). Capsular polysaccharide of group A Streptococcus. Microbiology Spectrum, 7(1), GPP3-0050-2018. https://doi.org/10.1128/microbiolspec.GPP3-0050-2018
Whitfield, C., & Trent, M. S. (2014). Biosynthesis and export of bacterial lipopolysaccharides. Annual Review of Biochemistry, 83, 99-128. https://doi.org/10.1146/annurev-biochem-060713-035600
Xie, L., Xu, R., Zhu, D., & Sun, J. (2022). Emerging resistance to ceftriaxone treatment owing to different ampD mutations in Enterobacter roggenkampii. Infection, Genetics and Evolution, 102, 105301. https://doi.org/10.1016/j.meegid.2022.105301
Xu, H., Miao, V., Kwong, W., Xia, R., & Davies, J. (2011). Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. Letters in Applied Microbiology, 52(4), 427-429. https://doi.org/10.1111/j.1472-765X.2011.03016.x
Xu, T., Zhang, C., Ji, Y., Song, J., Liu, Y., Guo, Y., & Zhou, K. (2021). Identification of mcr-10 carried by self-transmissible plasmids and chromosome in Enterobacter roggenkampii strains isolated from hospital sewage water. Environmental Pollution, 268(Pt B), 115706. https://doi.org/10.1016/j.envpol.2020.115706
Yang, Y., Pollard, A. M., Höfler, C., Poschet, G., Wirtz, M., Hell, R., & Sourjik, V. (2015). Relation between chemotaxis and consumption of amino acids in bacteria. Molecular Microbiology, 96(6), 1272-1282. https://doi.org/10.1111/mmi.13006
Ye, M., Hu, X., Lü, A., Sun, J., & Chen, C. (2020). Isolation and genomic characterization of a pathogenic Providencia rettgeri strain G0519 in turtle Trachemys scripta. Antonie van Leeuwenhoek, 113(11), 1633-1662. https://doi.org/10.1007/s10482-020-01469-4
Yoon, S. H., Ha, S., Lim, J., Kwon, S., & Chun, J. (2017). A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek, 110(10), 1281-1286. https://doi.org/10.1007/s10482-017-0844-4
Zhang, X., Sun, J., Chen, F., Qi, H., Chen, L., Sung, Y. Y., Huang, Y., Lv, A., & Hu, X. (2021). Phenotypic and genomic characterization of a Vibrio parahaemolyticus strain causing disease in Penaeus vannamei provides insights into its niche adaptation and pathogenic mechanism. Microbial Genomics, 7(5), 000549. https://doi.org/10.1099/mgen.0.000549
Zhou, Y., Yang, H., & Liu, J. (2021). Complete genome sequence of Enterobacter roggenkampii strain KQ-01, isolated from bacterial wilt-resistant mulberry cultivar YS283. Plant Disease, 105(3), 688-690. https://doi.org/10.1094/PDIS-07-20-1468-A
Zou, L., Meng, J., McDermott, P. F., Wang, F., Yang, Q., Cao, G., Hoffmann, M., & Zhao, S. (2014). Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA. The Journal of Antimicrobial Chemotherapy, 69(10), 2644-2649. https://doi.org/10.1093/jac/dku197