Seasickness susceptibility and the vestibular time constant: a prospective study.
Habituation
Motion sickness
Rotatory chair
Seasickness
Vestibular time constant
Journal
Experimental brain research
ISSN: 1432-1106
Titre abrégé: Exp Brain Res
Pays: Germany
ID NLM: 0043312
Informations de publication
Date de publication:
28 Nov 2023
28 Nov 2023
Historique:
received:
08
12
2022
accepted:
06
11
2023
medline:
28
11
2023
pubmed:
28
11
2023
entrez:
28
11
2023
Statut:
aheadofprint
Résumé
Human passive motion during boat, car or airplane travel may trigger motion sickness. Seasickness is the most provoking manifestation of motion sickness. It imposes major constraints on quality of life and human performance. Based on seasickness susceptibility the population is usually categorized into susceptible (S) and non-susceptible (NS). During repeated exposure some susceptible individuals undergo habituation and obtain symptoms relief, reflecting a third group of habituating (H) individuals. Recently, accumulative evidence suggests that the vestibular time constant (Tc) is associated with motion sickness susceptibility and attenuation of symptoms. These studies demonstrated that repeated passive motion stimuli lead to temporary short-term (days) changes in Tc, whereas sea sickness habituation process lasts 3 to 6 months. Therefore, the goal of the present study was to examine the behavior of Tc during the entire span of the seasickness habituation process between the H, S and NS groups to find an objective test for seasickness severity prediction. Tc of 30 subjects was prospectively evaluated pre, 3 and 6 months post exposure to sea environment using a computerized rotatory chair system protocol. Seasickness severity was evaluated by Wiker questionnaire. Significantly shorter Tc was found in the S group compared with the NS and H groups. Further analysis revealed lower maximal Slow Phase Velocity (mSPV) and nystagmus frequency (total number of beats/second) in the S group. Our results suggest that Tc, mSPV and nystagmus frequency might serve as a prediction for seasickness severity. This study was retrospectively registered on December 7th 2022 and assigned the identifier number NCT05640258.
Identifiants
pubmed: 38015244
doi: 10.1007/s00221-023-06745-z
pii: 10.1007/s00221-023-06745-z
doi:
Banques de données
ClinicalTrials.gov
['NCT05640258']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Israel Defense Forces (IDF) Medical Corps and Directorate of Defense Research & Development, Israeli Ministry of Defense (IMOD DDR&D).
ID : 4440766274
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Baloh RW, Honrubia V, Yee RD, Hess K (1984) Changes in the human vestibulo-ocular reflex after loss of peripheral sensitivity. Ann Neurol 16(2):222–228. https://doi.org/10.1002/ana.410160209
doi: 10.1002/ana.410160209
pubmed: 6476793
Bergstedt M (1973) Stepwise change of amplitude and frequency of vestibular nystagmus. Adv Otorhinolaryngol 19:304–310. https://doi.org/10.1159/000394002
doi: 10.1159/000394002
pubmed: 4541595
Bertolini G, Bockisch CJ, Straumann D, Zee DS, Ramat S (2008) Do humans show velocity-storage in the vertical rVOR? Prog Brain Res 171:207–210. https://doi.org/10.1016/S0079-6123(08)00628-6
doi: 10.1016/S0079-6123(08)00628-6
pubmed: 18718302
Brooks JX, Carriot J, Cullen KE (2015) Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 18:1310–1317. https://doi.org/10.1038/nn.4077
doi: 10.1038/nn.4077
pubmed: 26237366
pmcid: 6102711
Buizza A, Castelnuovo P, Mevio E, Mira E (1985) Harmonic versus impulsive acceleration testing of the vestibulo-ocular reflex in normal humans. Acta Otolaryngol 100(1–2):106–111. https://doi.org/10.3109/00016488509108594
doi: 10.3109/00016488509108594
pubmed: 4024886
Chua KW, Kek TL (2020) A preliminary study: central vestibular sensitivity affects motion sickness susceptibility through the efficacy of the velocity storage mechanism. Audiol Res 10(2):21–30. https://doi.org/10.4081/audiores.2020.245
doi: 10.4081/audiores.2020.245
pubmed: 33704147
Clément G, Tilikete C, Courjon JH (2008) Retention of habituation of vestibulo-ocular reflex and sensation of rotation in humans. Exp Brain Res 190(3):307–315
doi: 10.1007/s00221-008-1471-0
pubmed: 18592226
Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270(2):321–344. https://doi.org/10.1113/jphysiol.1977.sp011955
doi: 10.1113/jphysiol.1977.sp011955
pubmed: 409838
pmcid: 1353516
Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann NY Acad Sci 1004:359–376. https://doi.org/10.1196/annals.1303.034
doi: 10.1196/annals.1303.034
pubmed: 14662476
Cohen B, Dai M, Yakushin SB, Raphan T (2008) Baclofen, motion sickness susceptibility and the neural basis for velocity storage. Prog Brain Res 171:543–553. https://doi.org/10.1016/S0079-6123(08)00677-8
doi: 10.1016/S0079-6123(08)00677-8
pubmed: 18718351
Dai M, Klein A, Cohen B, Raphan T (1999) Model-based study of the human cupular time constant. J Vestib Res: Equilib Orientat 9(4):293–301
doi: 10.3233/VES-1999-9407
Dai M, Raphan T, Cohen B (2011) Prolonged reduction of motion sickness sensitivity by visual-vestibular interaction. Exp Brain Res 210(3–4):503–513. https://doi.org/10.1007/s00221-011-2548-8
doi: 10.1007/s00221-011-2548-8
pubmed: 21287155
pmcid: 3182575
Doron O, Samuel O, Karfunkel-Doron D, Tal D (2020) Scopolamine treatment and adaptation to airsickness. Aerosp Med Hum Perform 91(4):313–317. https://doi.org/10.3357/AMHP.5499.2020
doi: 10.3357/AMHP.5499.2020
pubmed: 32493552
Golding JF (2016) Motion sickness. Handb Clin Neurol 137:371–390. https://doi.org/10.1016/b978-0-444-63437-5.00027-3
doi: 10.1016/b978-0-444-63437-5.00027-3
pubmed: 27638085
Gutkovich YE, Lagami D, Jamison A, Fonar Y, Tal D (2022) Galvanic vestibular stimulation as a novel treatment for seasickness. Exp Brain Res 240(2):429–437. https://doi.org/10.1007/s00221-021-06263-w
doi: 10.1007/s00221-021-06263-w
pubmed: 34782915
Hain TC, Cherchi M, Perez-Fernandez N (2018) The gain-time constant product quantifies total vestibular output in bilateral vestibular loss. Front Neurol 9:396. https://doi.org/10.3389/fneur.2018.00396
doi: 10.3389/fneur.2018.00396
pubmed: 29942279
pmcid: 6004403
Hoffer ME, Gottshall K, Kopke RD, Weisskopf P, Moore R, Allen KA, Wester D (2003) Vestibular testing abnormalities in individuals with motion sickness. Otol Neurotol 24:633–636. https://doi.org/10.1097/00129492-200307000-00017
doi: 10.1097/00129492-200307000-00017
pubmed: 12851557
Lagami D, Shupak A, Jamison A, Tal D (2023) The vestibular time constant and clinical response to antimotion sickness medication. Ear Hear Adv Online Publ. https://doi.org/10.1097/AUD.0000000000001385
doi: 10.1097/AUD.0000000000001385
Lea J, Pothier D (eds) (2019) Vestibular disorders. Advances in otorhinolaryngology, vol 82. Basel, Karger, pp 32–38. https://doi.org/10.1159/000490269
Maes L, Dhooge I, De Vel E, D’haenens W, Bockstael A, Keppler H, Philips B, Swinnen F, Vinck BM (2008) Normative data and test-retest reliability of the sinusoidal harmonic acceleration test, pseudorandom rotation test and velocity step test. J Vestib Res 18(4):197–208 (PMID: 19208964)
doi: 10.3233/VES-2008-18403
pubmed: 19208964
Moon M, Chang SO, Kim MB (2017) Diverse clinical and laboratory manifestations of bilateral vestibulopathy. Laryngoscope 127(1):E42–E49. https://doi.org/10.1002/lary.25946
doi: 10.1002/lary.25946
pubmed: 26972747
Neupane AK, Gururaj K, Sinha SK (2018) Higher asymmetry ratio and refixation saccades in individuals with motion sickness. J Am Acad Audiol 29(2):175–186. https://doi.org/10.3766/jaaa.16175
doi: 10.3766/jaaa.16175
pubmed: 29401064
Oman CM, Pouliot CF, Natapoff A (1996) Horizontal angular VOR changes in orbital and parabolic flight: human neurovestibular studies on SLS-2. J Appl Physiol 81(1):69–81. https://doi.org/10.1152/jappl.1996.81.1.69
doi: 10.1152/jappl.1996.81.1.69
pubmed: 8828649
Paige GD (1983) Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. I. Response characteristics in normal animals. J Neurophysiol 49(1):134–151. https://doi.org/10.1152/jn.1983.49.1.134
doi: 10.1152/jn.1983.49.1.134
pubmed: 6827291
Ramat S, Bertolini G (2009) Estimating the time constants of the rVOR. A model-based study. Ann NY Acad Sci 1164:140–146. https://doi.org/10.1111/j.1749-6632.2009.03855.x
doi: 10.1111/j.1749-6632.2009.03855.x
pubmed: 19645892
Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248. https://doi.org/10.1007/BF00236613
doi: 10.1007/BF00236613
pubmed: 108122
Shahal B, Nachum Z, Spitzer O, Ben-David J, Duchman H, Podoshin L, Shupak A (1999) Computerized dynamic posturography and seasickness susceptibility. Laryngoscope 109(12):1996–2000. https://doi.org/10.1097/00005537-199912000-00019
doi: 10.1097/00005537-199912000-00019
pubmed: 10591362
Shojaku H, Watanabe Y, Ito M, Mizukoshi K, Yajima K, Sekiguchi C (1993) Effect of transdermally administered scopolamine on the vestibular system in humans. Acta Otolaryngol Suppl 504:541–545. https://doi.org/10.3109/00016489309128120
doi: 10.3109/00016489309128120
Shupak A, Spitzer O, Kerem D, Mendelowitz N, Gordon C, Melamed Y (1990) Vestibulo-ocular reflex as a parameter of seasickness susceptibility. Ann Otol Rhinol Laryngol 99(2 Pt 1):131–136. https://doi.org/10.1177/000348949009900211
doi: 10.1177/000348949009900211
pubmed: 2301869
Tal D, Hershkovitz D, Kaminski G, Bar R (2006) Vestibular evoked myogenic potential threshold and seasickness susceptibility. J Vestib Res: Equilib Orientat 16(6):273–278
doi: 10.3233/VES-2006-16604
Tal D, Bar R, Nachum Z, Gil A, Shupak A (2010) Postural dynamics and habituation to seasickness. Neurosci Lett 479(2):134–137. https://doi.org/10.1016/j.neulet.2010.05.044
doi: 10.1016/j.neulet.2010.05.044
pubmed: 20493235
Toglia JU, Suranyi L, Kosmorsky GS (1982) Is there nystagmus habituation to angular acceleration in man? Appl Neurophysiol 45(6):573–581. https://doi.org/10.1159/000101665
doi: 10.1159/000101665
pubmed: 7183240
Tribukait A (2003) Human vestibular memory studied via measurement of the subjective horizontal during gondola centrifugation. Neurobiol Learn Mem 80(1):1–10. https://doi.org/10.1016/s1074-7427(03)00041-8
doi: 10.1016/s1074-7427(03)00041-8
pubmed: 12737929
Wiker SF, Kennedy RS, McCauley ME, Pepper RL (1979) Reliability, validity and application of an improved scale for assessment of motion sickness severity, Report No. CG-D-29–79, US Department of Transportation, United States Coast-guard, Office of Research and Development, Washington, DC, pp 33
Yu J, Wan Y, Zhao J, Huang R, Wu P, Li W (2022) Normative data for rotational chair considering motion susceptibility. Front Neurol 13:978442. https://doi.org/10.3389/fneur.2022.978442
doi: 10.3389/fneur.2022.978442
pubmed: 36071903
pmcid: 9441918