Single-Channel sEMG-Based Estimation of Knee Joint Angle Using a Decomposition Algorithm With a State-Space Model.


Journal

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
ISSN: 1558-0210
Titre abrégé: IEEE Trans Neural Syst Rehabil Eng
Pays: United States
ID NLM: 101097023

Informations de publication

Date de publication:
2023
Historique:
medline: 5 12 2023
pubmed: 28 11 2023
entrez: 28 11 2023
Statut: ppublish

Résumé

Accurate human motion estimation is crucial for effective and safe human-robot interaction when using robotic devices for rehabilitation or performance enhancement. Although surface electromyography (sEMG) signals have been widely used to estimate human movements, conventional sEMG-based methods, which need sEMG signals measured from multiple relevant muscles, are usually subject to some limitations, including interference between sEMG sensors and wearable robots/environment, complicated calibration, as well as discomfort during long-term routine use. Few methods have been proposed to deal with these limitations by using single-channel sEMG (i.e., reducing the sEMG sensors as much as possible). The main challenge for developing single-channel sEMG-based estimation methods is that high estimation accuracy is difficult to be guaranteed. To address this problem, we proposed an sEMG-driven state-space model combined with an sEMG decomposition algorithm to improve the accuracy of knee joint movement estimation based on single-channel sEMG signals measured from gastrocnemius. The effectiveness of the method was evaluated via both single- and multi-speed walking experiments with seven and four healthy subjects, respectively. The results showed that the normal root-mean-squared error of the estimated knee joint angle using the method could be limited to 15%. Moreover, this method is robust with respect to variations in walking speeds. The estimation performance of this method was basically comparable to that of state-of-the-art studies using multi-channel sEMG.

Identifiants

pubmed: 38015663
doi: 10.1109/TNSRE.2023.3336317
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4703-4712

Auteurs

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH