Single-Molecule Graphene Liquid Cell Electron Microscopy for Instability of Intermediate Amyloid Fibrils.
amyloid beta
graphene liquid cell
instability
intermediate fibrillar species
liquid-phase electron microscopy
radical mitigation
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
28 Nov 2023
28 Nov 2023
Historique:
revised:
27
11
2023
received:
25
09
2023
pubmed:
28
11
2023
medline:
28
11
2023
entrez:
28
11
2023
Statut:
aheadofprint
Résumé
Single-molecule techniques are powerful microscopy methods that provide new insights into biological processes. Liquid-phase transmission electron microscopy (LP-TEM) is an ideal single-molecule technique for overcoming the poor spatiotemporal resolution of optical approaches. However, single-molecule LP-TEM is limited by several challenges such as electron-beam-induced molecular damage, difficulty in identifying biomolecular species, and a lack of analytical approaches for conformational dynamics. Herein, a single-molecule graphene liquid-cell TEM (GLC-TEM) technique that enables the investigation of real-time structural perturbations of intact amyloid fibrils is presented. It is demonstrated that graphene membranes significantly extend the observation period of native amyloid beta proteins without causing oxidative damage owing to electron beams, which is necessary for imaging. Stochastic and time-resolved investigations of single fibrils reveal that structural perturbations in the early fibrillar stage are responsible for the formation of various amyloid polymorphs. The advantage of observing structural behavior in real time with unprecedented resolution will potentially make GLC-TEM a complementary approach to other single-molecule techniques.
Identifiants
pubmed: 38016113
doi: 10.1002/adma.202309936
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2309936Subventions
Organisme : National Research Foundation of Korea
ID : NRF-2022R1A6A3A13072970
Organisme : National Research Foundation of Korea
ID : NRF-2021M3H4A6A02050365
Organisme : National Research Foundation of Korea
ID : NRF-2022R1A2C2008929
Organisme : National Research Foundation of Korea
ID : RS-2023-00222411
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
D. Eisenberg, M. Jucker, Cell 2012, 148, 1188.
J. Hardy, D. J. Selkoe, Science 2002, 297, 353.
E. Karran, M. Mercken, B. D. Strooper, Nat. Rev. Drug Discov. 2011, 10, 698.
M. Fändrich, S. Nyström, K. P. R. Nilsson, A. Böckmann, H. Levine, P. Hammarström, J. Intern. Med. 2018, 283, 218.
R. Tycko, Neuron 2015, 86, 632.
M. R. Sawaya, M. P. Hughes, J. A. Rodriguez, R. Riek, D. S. Eisenberg, Cell 2021, 184, 4857.
M. G. Iadanza, M. P. Jackson, E. W. Hewitt, N. A. Ranson, S. E. Radford, Nat. Rev. Mol. Cell Biol. 2018, 19, 755.
M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova, S. A. Sievers, M. I. Apostol, M. J. Thompson, M. Balbirnie, J. J. W. Wiltzius, H. T. Mcfarlane, A. Ø. Madsen, C. Riekel, D. Eisenberg, Nature 2007, 447, 453.
R. Gallardo, N. A. Ranson, S. E. Radford, Curr. Opin. Struct. Biol. 2020, 60, 7.
R. Nelson, M. R. Sawaya, M. Balbirnie, A. Ø. Madsen, C. Riekel, R. Grothe, D. Eisenberg, Nature 2005, 435, 773.
N. Hirota-Nakaoka, J. Biochem. 2003, 134, 159.
L. D. Aubrey, B. J. F. Blakeman, L. Lutter, C. J. Serpell, M. F. Tuite, L. C. Serpell, W.-F. Xue, Commun. Chem. 2020, 3, 125.
J. Meinhardt, C. Sachse, P. Hortschansky, N. Grigorieff, M. Fändrich, J. Mol. Biol. 2009, 386, 869.
F. M. Ross, Science 2015, 350, aaa9886.
N. De Jonge, F. M. Ross, Nat. Nanotechnol. 2011, 6, 695.
N. De Jonge, L. Houben, R. E. Dunin-Borkowski, F. M. Ross, Nat. Rev. Mater. 2019, 4, 61.
K. Koo, J. Park, S. Ji, S. Toleukhanova, J. M. Yuk, Adv. Mater. 2020, 33, 2005468.
E. Kennedy, E. M. Nelson, T. Tanaka, J. Damiano, G. Timp, ACS Nano 2016, 10, 2669.
J. M. Yuk, J. Park, P. Ercius, K. Kim, D. J. Hellebusch, M. F. Crommie, J. Y. Lee, A. Zettl, A. P. Alivisatos, Science 2012, 336, 61.
J. Park, K. Koo, N. Noh, J. H. Chang, J. Y. Cheong, K. S. Dae, J. S. Park, S. Ji, I.-D. Kim, J. M. Yuk, ACS Nano 2021, 15, 288.
H. Cho, M. R. Jones, S. C. Nguyen, M. R. Hauwiller, A. Zettl, A. P. Alivisatos, Nano Lett. 2017, 17, 414.
K. Koo, K. S. Dae, Y. K. Hahn, J. M. Yuk, Nano Lett. 2020, 20, 4708.
S. Keskin, N. De Jonge, Nano Lett. 2018, 18, 7435.
H. Wang, B. Li, Y.-J. Kim, O.-H. Kwon, S. Granick, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 1283.
H. Wang, Z. Xu, S. Mao, S. Granick, ACS Nano 2022, 16, 18526.
I. N. Dahmke, A. Verch, J. Hermannsdörfer, D. B. Peckys, R. S. Weatherup, S. Hofmann, N. De Jonge, ACS Nano 2017, 11, 11108.
A. Dubnovitsky, A. Sandberg, M. M. Rahman, I. Benilova, C. Lendel, T. Härd, PLoS One 2013, 8, e66101.
R. Khurana, C. Ionescu-Zanetti, M. Pope, J. Li, L. Nielson, M. Ramírez-Alvarado, L. Regan, A. L. Fink, S. A. Carter, Biophys. J. 2003, 85, 1135.
J. D. Harper, S. S. Wong, C. M. Lieber, P. T. Lansbury, Chem. Biol. 1997, 4, 119.
Z. Xu, R. Paparcone, M. J. Buehler, Biophys. J. 2010, 98, 2053.
A.-J. Li, R. Nussinov, Proteins: Struct., Funct., Bioinf. 1998, 32, 111.
D. Thirumalai, G. Reddy, J. E. Straub, Acc. Chem. Res. 2012, 45, 83.
W. M. Berhanu, U. H. E. Hansmann, PLoS One 2012, 7, e41479.
J.-P. Colletier, A. Laganowsky, M. Landau, M. Zhao, A. B. Soriaga, L. Goldschmidt, D. Flot, D. Cascio, M. R. Sawaya, D. Eisenberg, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 16938.
J. Park, B. Kahng, W. Hwang, PLoS Comput. Biol. 2009, 5, e1000492.
I. Ohmine, H. Tanaka, P. G. Wolynes, J. Chem. Phys. 1988, 89, 5852.