Comparative analysis identifies genetic and molecular factors associated with prognostic clusters of PANoptosis in glioma, kidney and melanoma cancer.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 Nov 2023
Historique:
received: 27 05 2023
accepted: 22 11 2023
medline: 30 11 2023
pubmed: 29 11 2023
entrez: 28 11 2023
Statut: epublish

Résumé

The importance of inflammatory cell death, PANoptosis, in cancer is increasingly being recognized. PANoptosis can promote or inhibit tumorigenesis in context-dependent manners, and a computational approach leveraging transcriptomic profiling of genes involved in PANoptosis has shown that patients can be stratified into PANoptosis High and PANoptosis Low clusters that have significant differences in overall survival for low grade glioma (LGG), kidney renal cell carcinoma (KIRC) and skin cutaneous melanoma (SKCM). However, the molecular mechanisms that contribute to differential prognosis between PANoptosis clusters require further elucidation. Therefore, we performed a comprehensive comparison of genetic, genomic, tumor microenvironment, and pathway characteristics between the PANoptosis High and PANoptosis Low clusters to determine the relevance of each component in driving the differential associations with prognosis for LGG, KIRC and SKCM. Across these cancer types, we found that activation of the proliferation pathway was significantly different between PANoptosis High and Low clusters. In LGG and SKCM, we also found that aneuploidy and immune cell densities and activations contributed to differences in PANoptosis clusters. In individual cancers, we identified important roles for barrier gene pathway activation (in SKCM) and the somatic mutation profiles of driver oncogenes as well as hedgehog signaling pathway activation (in LGG). By identifying these genetic and molecular factors, we can possibly improve the prognosis for at risk-stratified patient populations based on the PANoptosis phenotype in LGG, KIRC and SKCM. This not only advances our mechanistic understanding of cancer but will allow for the selection of optimal treatment strategies.

Identifiants

pubmed: 38017056
doi: 10.1038/s41598-023-48098-1
pii: 10.1038/s41598-023-48098-1
pmc: PMC10684528
doi:

Substances chimiques

Hedgehog Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

20962

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI101935
Pays : United States
Organisme : NIAID NIH HHS
ID : R37 AI101935
Pays : United States
Organisme : NIH HHS
ID : AI101935
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Oncoimmunology. 2017 Feb 6;6(2):e1253654
pubmed: 28344865
Cancer Immunol Immunother. 2018 Jul;67(7):1031-1040
pubmed: 29541787
Cell. 2021 Jun 24;184(13):3573-3587.e29
pubmed: 34062119
Cancer Cell Int. 2021 Jul 21;21(1):389
pubmed: 34289846
Oncoimmunology. 2016 Oct 18;5(12):e1240857
pubmed: 28123876
Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612
pubmed: 33237311
Brief Bioinform. 2021 Nov 5;22(6):
pubmed: 33979427
Cell Death Dis. 2022 Mar 25;13(3):269
pubmed: 35338116
Cancer Immunol Res. 2016 Jul;4(7):600-10
pubmed: 27197066
Elife. 2017 Nov 13;6:
pubmed: 29130882
Nature. 2019 May;569(7757):503-508
pubmed: 31068700
Nat Commun. 2019 Aug 8;10(1):3574
pubmed: 31395879
BMC Genomics. 2016 Aug 22;17 Suppl 7:525
pubmed: 27556158
Cell Syst. 2018 Mar 28;6(3):271-281.e7
pubmed: 29596782
Int J Mol Sci. 2021 Jun 29;22(13):
pubmed: 34209703
Int J Oncol. 2012 Nov;41(5):1561-9
pubmed: 22941386
Nature. 2021 Sep;597(7876):415-419
pubmed: 34471287
Sci Rep. 2013 Oct 02;3:2650
pubmed: 24084849
Cancer Cell. 2018 Apr 9;33(4):676-689.e3
pubmed: 29622463
Front Cell Infect Microbiol. 2020 May 29;10:237
pubmed: 32547960
Genome Res. 2018 Nov;28(11):1747-1756
pubmed: 30341162
Biochem Biophys Res Commun. 2022 Aug 30;617(Pt 2):69-76
pubmed: 35691117
Front Oncol. 2021 Jul 13;11:709077
pubmed: 34327145
Cell Rep. 2021 Oct 19;37(3):109858
pubmed: 34686350
Genome Med. 2019 May 24;11(1):34
pubmed: 31126321
J Immunother Cancer. 2020 Apr;8(1):
pubmed: 32376723
Nanoscale. 2022 Jan 6;14(2):333-349
pubmed: 34796889
Sci Rep. 2020 Apr 10;10(1):6220
pubmed: 32277125
Sci Immunol. 2022 Aug 26;7(74):eabo6294
pubmed: 35587515
Emerg Top Life Sci. 2017 Dec 12;1(5):429-445
pubmed: 33525803
NAR Cancer. 2022 Nov 01;4(4):zcac033
pubmed: 36329783
Front Immunol. 2020 Aug 12;11:2039
pubmed: 32903444
Immunobiology. 2020 Jan;225(1):151853
pubmed: 31703822
Oncoimmunology. 2019 Sep 24;8(12):e1665978
pubmed: 31741768
Oncoimmunology. 2018 Dec 12;8(3):1548241
pubmed: 30723576
Bioinformatics. 2016 Sep 15;32(18):2847-9
pubmed: 27207943
Int J Cancer. 2013 May 15;132(10):2316-26
pubmed: 23124507
Gut. 2023 Jul;72(7):1326-1339
pubmed: 36442992
Cell Syst. 2015 Dec 23;1(6):417-425
pubmed: 26771021
Nat Commun. 2013;4:2126
pubmed: 23839242
Immunity. 2018 Apr 17;48(4):812-830.e14
pubmed: 29628290
Cell. 2020 Apr 30;181(3):674-687.e13
pubmed: 32298652
Aging Dis. 2022 Jun 1;13(3):899-909
pubmed: 35656115
Emerg Top Life Sci. 2017 Dec 12;1(5):411-419
pubmed: 33525800
Methods Mol Biol. 2018;1711:243-259
pubmed: 29344893
Immunity. 2013 Oct 17;39(4):782-95
pubmed: 24138885
BMC Bioinformatics. 2013 Jan 16;14:7
pubmed: 23323831
J Immunother Cancer. 2019 May 22;7(1):131
pubmed: 31113486
Sci Immunol. 2016 Aug 5;1(2):
pubmed: 27917412
Genome Biol. 2016 Aug 22;17(1):174
pubmed: 27549193
Front Cell Infect Microbiol. 2019 Nov 26;9:406
pubmed: 31850239
Science. 2016 Apr 8;352(6282):189-96
pubmed: 27124452
JCI Insight. 2020 Jun 18;5(12):
pubmed: 32554929
Database (Oxford). 2016 Jul 03;2016:
pubmed: 27374120
Cancer Discov. 2022 Jan;12(1):31-46
pubmed: 35022204
CA Cancer J Clin. 2018 Nov;68(6):394-424
pubmed: 30207593
Front Cell Dev Biol. 2021 Jun 11;9:676485
pubmed: 34179006
Nat Commun. 2013;4:2612
pubmed: 24113773
Cell Death Differ. 2018 Mar;25(3):486-541
pubmed: 29362479
J Exp Med. 2018 Apr 2;215(4):1023-1034
pubmed: 29500178
Cell. 2021 Jan 7;184(1):149-168.e17
pubmed: 33278357
Cancer Discov. 2022 Jan;12(1):90-107
pubmed: 34789537
Bioinformatics. 2014 Apr 1;30(7):1015-6
pubmed: 24371154
Immunohorizons. 2021 Jul 21;5(7):568-580
pubmed: 34290111

Auteurs

Raghvendra Mall (R)

Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA.
Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates.

Thirumala-Devi Kanneganti (TD)

Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA. Thirumala-Devi.Kanneganti@StJude.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH