Highly accelerated, Dixon-based non-contrast MR angiography versus high-pitch CT angiography.

Angiography Computed tomography Follow-up studies Magnetic resonance imaging

Journal

La Radiologia medica
ISSN: 1826-6983
Titre abrégé: Radiol Med
Pays: Italy
ID NLM: 0177625

Informations de publication

Date de publication:
29 Nov 2023
Historique:
received: 24 07 2023
accepted: 07 11 2023
medline: 29 11 2023
pubmed: 29 11 2023
entrez: 28 11 2023
Statut: aheadofprint

Résumé

To compare a novel, non-contrast, flow-independent, 3D isotropic magnetic resonance angiography (MRA) sequence that combines respiration compensation, electrocardiogram (ECG)-triggering, undersampling, and Dixon water-fat separation with an ECG-triggered aortic high-pitch computed tomography angiography (CTA) of the aorta. Twenty-five patients with recent CTA were scheduled for non-contrast MRA on a 3 T MRI. Aortic diameters and cross-sectional areas were measured on MRA and CTA using semiautomatic measurement tools at 11 aortic levels. Image quality was assessed independently by two radiologists on predefined aortic levels, including myocardium, proximal aortic branches, pulmonary veins and arteries, and the inferior (IVC) and superior vena cava (SVC). Image quality was assessed on a 5-point Likert scale. All datasets showed diagnostic image quality. Visual grading was similar for MRA and CTA regarding overall image quality (0.71), systemic arterial image quality (p = 0.07-0.91) and pulmonary artery image quality (p = 0.05). Both readers favored MRA for SVC and IVC, while CTA was preferred for pulmonary veins (all p < 0.05). No significant difference was observed in aortic diameters or cross-sectional areas between native MRA and contrast-enhanced CTA (p = 0.08-0.94). The proposed non-contrast MRA enables robust imaging of the aorta, its proximal branches and the pulmonary arteries and great veins with image quality and aortic diameters and cross-sectional areas comparable to that of CTA. Moreover, this technique represents a suitable free-breathing alternative, without the use of contrast agents or ionizing radiation. Therefore, it is especially suitable for patients requiring repetitive imaging.

Identifiants

pubmed: 38017228
doi: 10.1007/s11547-023-01752-0
pii: 10.1007/s11547-023-01752-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Sampson UKA, Norman PE, Fowkes FGR et al (2014) Global and regional burden of aortic dissection and aneurysms: mortality trends in 21 World Regions, 1990 to 2010. Glob Heart 9:171–180
doi: 10.1016/j.gheart.2013.12.010 pubmed: 25432126
(2014) 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adultThe Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 35:2873–2926
Turtle EJ, Sule AA, Bath LE et al (2013) Assessing and addressing cardiovascular risk in adults with Turner syndrome. Clin Endocrinol (Oxf) 78:639–645
doi: 10.1111/cen.12104 pubmed: 23173989
Baumgartner H, De Backer J, Babu-Narayan SV et al (2021) 2020 ESC Guidelines for the management of adult congenital heart disease. Eur Heart J 42:563–645
doi: 10.1093/eurheartj/ehaa554 pubmed: 32860028
Berrington de Gonzalez A, Pasqual E, Veiga L (2021) Epidemiological studies of CT scans and cancer risk: the state of the science. Br J Radiol 94:20210471
doi: 10.1259/bjr.20210471 pubmed: 34545766 pmcid: 9328069
Kwee TC, Dijkstra H, Knapen DG et al (2020) Which patients are prone to undergo disproportionate recurrent CT imaging and should we worry? Eur J Radiol 125:108898
doi: 10.1016/j.ejrad.2020.108898 pubmed: 32088659
Faucon A-L, Bobrie G, Clément O (2019) Nephrotoxicity of iodinated contrast media: From pathophysiology to prevention strategies. Eur J Radiol 116:231–241
doi: 10.1016/j.ejrad.2019.03.008 pubmed: 31054788
Pennig L, Wagner A, Weiss K et al (2020) Imaging of the pulmonary vasculature in congenital heart disease without gadolinium contrast: Intraindividual comparison of a novel Compressed SENSE accelerated 3D modified REACT with 4D contrast-enhanced magnetic resonance angiography. J Cardiovasc Magn Reson 22:8
doi: 10.1186/s12968-019-0591-y pubmed: 31969137 pmcid: 6977250
Bäuerle T, Saake M, Uder M (2021) Gadolinium-based contrast agents: What we learned from acute adverse events, nephrogenic systemic fibrosis and brain retention. ROFO Fortschr Geb Rontgenstr Nuklearmed 193:1010–1018
doi: 10.1055/a-1328-3177 pubmed: 33348385
Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841
doi: 10.1148/radiol.13131669 pubmed: 24475844
Choi JW, Moon W-J (2019) Gadolinium deposition in the brain: current updates. Korean J Radiol 20:134–147
doi: 10.3348/kjr.2018.0356 pubmed: 30627029
Mathur M, Jones JR, Weinreb JC (2020) Gadolinium deposition and nephrogenic systemic fibrosis: a radiologist’s primer. Radiographics 40:153–162
doi: 10.1148/rg.2020190110 pubmed: 31809230
Iyad N, Ahmad SM, Alkhatib SG, Hjouj M (2023) Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: literature review. Eur J Radiol Open 11:100503
doi: 10.1016/j.ejro.2023.100503 pubmed: 37456927 pmcid: 10344828
De Leucio A, De Jesus O (2022) MR Angiogram. In: StatPearls. StatPearls Publishing, Treasure Island (FL)
Morita S, Masukawa A, Suzuki K et al (2011) Unenhanced MR angiography: techniques and clinical applications in patients with chronic kidney disease. Radiogr Rev Publ Radiol Soc N Am Inc 31:E13-33
Shaw JL, Knowles BR, Goldfarb JW et al (2014) Left atrial late gadolinium enhancement with water-fat separation: the importance of phase-encoding order. J Magn Reson Imaging JMRI 40:119–125
doi: 10.1002/jmri.24340 pubmed: 24105717
Munoz C, Bustin A, Neji R et al (2020) Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 22:53
Pennig L, Wagner A, Weiss K et al (2021) Comparison of a novel Compressed SENSE accelerated 3D modified relaxation-enhanced angiography without contrast and triggering with CE-MRA in imaging of the thoracic aorta. Int J Cardiovasc Imaging 37:315–329
doi: 10.1007/s10554-020-01979-2 pubmed: 32852711
Zeilinger MG, Wiesmüller M, Forman C et al (2021) 3D Dixon water-fat LGE imaging with image navigator and compressed sensing in cardiac MRI. Eur Radiol 31:3951–3961
doi: 10.1007/s00330-020-07517-x pubmed: 33263160
Ye JC (2019) Compressed sensing MRI: a review from signal processing perspective. BMC Biomed Eng 1:8
doi: 10.1186/s42490-019-0006-z pubmed: 32903346 pmcid: 7412677
Forman C, Wetzl J, Hayes C, Schmidt M (2016) Compressed sensing: a paradigm shift in MRI. Magnetom Flash 66:9–13
Markl M, Alley MT, Elkins CJ, Pelc NJ (2003) Flow effects in balanced steady state free precession imaging. Magn Reson Med 50:892–903
doi: 10.1002/mrm.10631 pubmed: 14586999
Saranathan M, Glockner J (2013) Three-dimensional dixon fat-water separated rapid breathheld imaging of myocardial infarction: 3D Fat Suppressed Imaging of Infarction. J Magn Reson Imaging 38:1362–1368
doi: 10.1002/jmri.24113 pubmed: 23559381
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174
doi: 10.2307/2529310 pubmed: 843571
Yacoub B, Stroud RE, Piccini D et al (2021) Measurement accuracy of prototype non-contrast, compressed sensing-based, respiratory motion-resolved whole heart cardiovascular magnetic resonance angiography for the assessment of thoracic aortic dilatation: comparison with computed tomography angiography. J Cardiovasc Magn Reson 23:7
doi: 10.1186/s12968-020-00697-x pubmed: 33557887 pmcid: 7871614
Goshima S, Kanematsu M, Kondo H et al (2013) Preoperative planning for endovascular aortic repair of abdominal aortic aneurysms: feasibility of nonenhanced MR angiography versus contrast-enhanced CT angiography. Radiology 267:948–955
doi: 10.1148/radiol.13121557 pubmed: 23392427
Correa Londono M, Trussardi N, Obmann VC et al (2021) Radial self-navigated native magnetic resonance angiography in comparison to navigator-gated contrast-enhanced MRA of the entire thoracic aorta in an aortic patient collective. J Cardiovasc Magn Reson 23:94
doi: 10.1186/s12968-021-00774-9 pubmed: 34247640 pmcid: 8274024
von Knobelsdorff-Brenkenhoff F, Gruettner H, Trauzeddel RF et al (2014) Comparison of native high-resolution 3D and contrast-enhanced MR angiography for assessing the thoracic aorta. Eur Heart J - Cardiovasc Imaging 15:651–658
doi: 10.1093/ehjci/jet263
Bannas P, Groth M, Rybczynski M et al (2013) Assessment of aortic root dimensions in patients with suspected Marfan syndrome: intraindividual comparison of contrast-enhanced and non-contrast magnetic resonance angiography with echocardiography. Int J Cardiol 167:190–196
doi: 10.1016/j.ijcard.2011.12.041 pubmed: 22240770
Wright F, Warncke M, Sinn M et al (2023) Assessment of aortic diameter in Marfan patients: intraindividual comparison of 3D-Dixon and 2D-SSFP magnetic resonance imaging. Eur Radiol 33:1687–1697
doi: 10.1007/s00330-022-09162-y pubmed: 36269370
Ellis JH, Khalatbari S, Yosef M et al (2019) Influence of clinical factors on risk of contrast-induced nephrotoxicity from IV iodinated low-osmolality contrast material in patients with a low estimated glomerular filtration rate. AJR Am J Roentgenol 213:W188–W193
doi: 10.2214/AJR.19.21424 pubmed: 31268731
Baliyan V, Shaqdan K, Hedgire S, Ghoshhajra B (2019) Vascular computed tomography angiography technique and indications. Cardiovasc Diagn Ther 9:S14-S1S27
doi: 10.21037/cdt.2019.07.04 pubmed: 31559151 pmcid: 6732113
Heshmatzadeh Behzadi A, Farooq Z, Newhouse JH, Prince MR (2018) MRI and CT contrast media extravasation: a systematic review. Medicine (Baltimore) 97:e0055
doi: 10.1097/MD.0000000000010055 pubmed: 29489663

Auteurs

Martin Georg Zeilinger (MG)

Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. martin.zeilinger@uk-erlangen.de.

Daniel Giese (D)

Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Magnetic Resonance, Siemens Healthcare, Erlangen, Germany.

Michaela Schmidt (M)

Magnetic Resonance, Siemens Healthcare, Erlangen, Germany.

Matthias Stefan May (MS)

Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Rolf Janka (R)

Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Rafael Heiss (R)

Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Fabian Ammon (F)

Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Institute of Cardiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Stephan Achenbach (S)

Institute of Cardiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Michael Uder (M)

Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Christoph Treutlein (C)

Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Classifications MeSH