Gel-to-Solution Transition of Sulfhydryl Self-Assembled Peptide Hydrogels Undergoing Oxidative Modulation.
Raman spectra
disulfide
hydrogel
oxidation−reduction
self-assembly peptide
Journal
ACS applied bio materials
ISSN: 2576-6422
Titre abrégé: ACS Appl Bio Mater
Pays: United States
ID NLM: 101729147
Informations de publication
Date de publication:
28 Nov 2023
28 Nov 2023
Historique:
medline:
29
11
2023
pubmed:
29
11
2023
entrez:
29
11
2023
Statut:
aheadofprint
Résumé
The design of self-assembling biomaterials needs to take into consideration the timing and location of the self-assembly process. In recent decades, the principal strategy has been to control the peptide self-assembly under specific conditions to enable its functional performance. However, few studies have explored the responsive elimination of functional self-assembled peptide hydrogels after their function has been performed. We designed peptide ECAFF (ECF-5), which under reductive conditions can self-assemble into a hydrogel. Upon exposure to oxidizing conditions, disulfide bonds form between the peptides, altering their molecular structure and impacting their self-assembly capability. As a result, the peptide hydrogels transition to a soluble state. This study investigates the utilization of oxidation to induce a gel-to-solution transition in peptide hydrogels and provides an explanation for their degradation following free radical treatment. Self-assembled peptide hydrogel materials can be designed from a fresh perspective by considering the degradation that takes place after functional execution.
Identifiants
pubmed: 38018082
doi: 10.1021/acsabm.3c00932
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM