IKZF3 polymorphisms contribute to the increased risk of acute lymphoblastic leukemia in children.
IKAROS family zinc finger 3 (IKZF3)
acute lymphoblastic leukemia (ALL)
children
single nucleotide polymorphisms (SNPs)
susceptibility
Journal
Cancer
ISSN: 1097-0142
Titre abrégé: Cancer
Pays: United States
ID NLM: 0374236
Informations de publication
Date de publication:
29 Nov 2023
29 Nov 2023
Historique:
revised:
25
10
2023
received:
18
08
2023
accepted:
27
10
2023
medline:
29
11
2023
pubmed:
29
11
2023
entrez:
29
11
2023
Statut:
aheadofprint
Résumé
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. IKZF3 (IKAROS family zinc finger 3) is a hematopoietic-specific transcription factor, and it has been validated that it is involved in leukemia. However, the role of IKZF3 single-nucleotide polymorphisms (SNPs) remains unclear. In this case-control study, the authors investigated the association of IKZF3 SNPs with ALL in children. Six IKZF3 reference SNPs (rs9635726, rs2060941, rs907092, rs12946510, rs1453559, and rs62066988) were genotyped in 692 patients who had ALL (cases) and in 926 controls. The associations between IKZF3 polymorphisms and ALL risk were determined using odds ratios (ORs) and 95% confidence intervals (CIs). The associations of rs9635726 and rs2060941 with the risk of ALL were further estimated by using false-positive report probability (FPRP) analysis. Functional analysis in silico was performed to evaluate the probability that rs9635726 and rs2060941 might influence the regulation of IKZF3. The authors observed that rs9635726C>T (adjusted OR, 1.49; 95% CI, 1.06-2.11; p = .023) and rs2060941G>T (adjusted OR, 1.51; 95% CI, 1.24-1.84; p = .001) were related to and increased risk of ALL in the recessive and dominant models, respectively. Furthermore, the associations of both rs9635726 (FPRP = .177) and rs2060941 (FPRP < .001) with ALL were noteworthy in the FPRP analysis. Functional analysis indicated that rs9635726 and rs2060941 might repress the transcription of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. This study revealed that IKZF3 polymorphisms were associated with increased ALL susceptibility in children and might influence the expression of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. IKZF3 polymorphisms were suggested as a biomarker for childhood ALL.
Sections du résumé
BACKGROUND
BACKGROUND
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. IKZF3 (IKAROS family zinc finger 3) is a hematopoietic-specific transcription factor, and it has been validated that it is involved in leukemia. However, the role of IKZF3 single-nucleotide polymorphisms (SNPs) remains unclear. In this case-control study, the authors investigated the association of IKZF3 SNPs with ALL in children.
METHODS
METHODS
Six IKZF3 reference SNPs (rs9635726, rs2060941, rs907092, rs12946510, rs1453559, and rs62066988) were genotyped in 692 patients who had ALL (cases) and in 926 controls. The associations between IKZF3 polymorphisms and ALL risk were determined using odds ratios (ORs) and 95% confidence intervals (CIs). The associations of rs9635726 and rs2060941 with the risk of ALL were further estimated by using false-positive report probability (FPRP) analysis. Functional analysis in silico was performed to evaluate the probability that rs9635726 and rs2060941 might influence the regulation of IKZF3.
RESULTS
RESULTS
The authors observed that rs9635726C>T (adjusted OR, 1.49; 95% CI, 1.06-2.11; p = .023) and rs2060941G>T (adjusted OR, 1.51; 95% CI, 1.24-1.84; p = .001) were related to and increased risk of ALL in the recessive and dominant models, respectively. Furthermore, the associations of both rs9635726 (FPRP = .177) and rs2060941 (FPRP < .001) with ALL were noteworthy in the FPRP analysis. Functional analysis indicated that rs9635726 and rs2060941 might repress the transcription of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21.
CONCLUSIONS
CONCLUSIONS
This study revealed that IKZF3 polymorphisms were associated with increased ALL susceptibility in children and might influence the expression of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. IKZF3 polymorphisms were suggested as a biomarker for childhood ALL.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 82101959
Organisme : Basic and Applied Basic Research Foundation of Guangdong Province
ID : 2020A1515110886
Organisme : Guangzhou Municipal Science and Technology Project
ID : 202102020344
Organisme : Guangzhou Clinical High-tech, Major and Special Technology Project
ID : 2023C-TS56
Organisme : Guangzhou Clinical High-tech, Major and Special Technology Project
ID : 2019TS56
Informations de copyright
© 2023 American Cancer Society.
Références
Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541-1552. doi:10.1056/nejmra1400972
Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol. 2017;35(9):975-983. doi:10.1200/jco.2016.70.7836
Spector LG, Pankratz N, Marcotte EL. Genetic and nongenetic risk factors for childhood cancer. Pediatr Clin North Am. 2015;62(1):11-25. doi:10.1016/j.pcl.2014.09.013
Górniak P, Pastorczak A, Zalewska-Szewczyk B, et al. Polymorphism in IKZF1 gene affects age at onset of childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2014;55(9):2174-2178. doi:10.3109/10428194.2013.866661
Zhang H, Liu AP, Devidas M, et al. Association of GATA3 polymorphisms with minimal residual disease and relapse risk in childhood acute lymphoblastic leukemia. J Natl Cancer Inst. 2021;113(4):408-417. doi:10.1093/jnci/djaa138
Yang X, Wu X, Fang N, et al. FOXO3 gene polymorphisms influence the risk of acute lymphoblastic leukemia in Chinese children. J Cell Biochem. 2020;121(2):2019-2026. doi:10.1002/jcb.29436
Guo H, Li N, Sun Y, et al. MYBL2 gene polymorphism is associated with acute lymphoblastic leukemia susceptibility in children. Front Oncol. 2021;11:734588. doi:10.3389/fonc.2021.734588
Li Y, Pei YX, Wang LN, et al. MTHFR-C677T gene polymorphism and susceptibility to acute lymphoblastic leukemia in children: a meta-analysis. Crit Rev Eukarot Gene. 2020;30(2):125-136. doi:10.1615/critreveukaryotgeneexpr.2020033468
Heizmann B, Kastner P, Chan S. The Ikaros family in lymphocyte development. Curr Opin Immunol. 2018;51:14-23. doi:10.1016/j.coi.2017.11.005
Zaini A, Zaph C. Aiolos: a molecular guardian of type 2 innate immune cell residency and response. Mucosal Immunol. 2021;14(6):1221-1223. doi:10.1038/s41385-021-00444-0
Fang M, Becker PS, Linenberger M, et al. Adult low-hypodiploid acute B-lymphoblastic leukemia with IKZF3 deletion and TP53 mutation: comparison with pediatric patients. Am J Clin Pathol. 2015;144(2):263-270. doi:10.1309/ajcpw83oxpykpeen
Kuehn HS, Chang J, Yamashita M, et al. T and B cell abnormalities, pneumocystis pneumonia, and chronic lymphocytic leukemia associated with an AIOLOS defect in patients. J Exp Med. 2021;218(12);20211118. doi:10.1084/jem.20211118
Awwad M, Kriegsmann K, Plaumann J, et al. The prognostic and predictive value of IKZF1 and IKZF3 expression in T-cells in patients with multiple myeloma. Oncoimmunology. 2018;7(10):e1486356. doi:10.1080/2162402x.2018.1486356
Schafer PH, Ye Y, Wu L, et al. Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: immunomodulation in healthy volunteers and relevance to systemic lupus erythematosus. Ann Rheum Dis. 2018;77(10):1516-1523. doi:10.1136/annrheumdis-2017-212916
He J, Qiu L, Wang M, et al. Polymorphisms in the XPG gene and risk of gastric cancer in Chinese populations. Hum Genet. 2012;131(7):1235-1244. doi:10.1007/s00439-012-1152-8
He J, Zhang R, Zou Y, et al. Evaluation of GWAS-identified SNPs at 6p22 with neuroblastoma susceptibility in a Chinese population. Tumor Biol. 2016;37(2):1635-1639. doi:10.1007/s13277-015-3936-7
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580-585. doi:10.1038/ng.2653
Tsunoda T, Takagi T. Estimating transcription factor bindability on DNA. Bioinformatics. 1999;15(7):622-630. doi:10.1093/bioinformatics/15.7.622
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74. doi:10.1038/nature11247
Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317-330. doi:10.1038/nature14248
Zhou X, Li D, Zhang B, et al. Epigenomic annotation of genetic variants using the Roadmap Epigenome Browser. Nat Biotechnol. 2015;33(4):345-346. doi:10.1038/nbt.3158
Wacholder S, Chanock S, Garcia-Closas M, El GL, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434-442. doi:10.1093/jnci/djh075
Chiaretti S, Zini G, Bassan R. Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis. 2014;6(1):e2014073. doi:10.4084/mjhid.2014.073
Yu J, Dong J, Jia Y, et al. Individualized leukemia cell-population profiles in common B-cell acute lymphoblastic leukemia patients. Chin J Cancer. 2013;32(4):213-223. doi:10.5732/cjc.012.10041
Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783.
John LB, Ward AC. The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol. 2011;48(9-10):1272-1278. doi:10.1016/j.molimm.2011.03.006
Cippitelli M, Stabile H, Kosta A, et al. Role of Aiolos and Ikaros in the antitumor and immunomodulatory activity of IMiDs in multiple myeloma: better to lose than to find them. Int J Mol Sci. 2021;22(3):1103. doi:10.3390/ijms22031103
Zhuang Y, Lu Y, Li D, Sun N, Ju X. Upregulation of AIOLOS induces apoptosis and enhances etoposide chemosensitivity in Jurkat leukemia cells. Oncol Rep. 2015;33(3):1319-1325. doi:10.3892/or.2014.3677
Hung JJ, Kao YS, Huang CH, Hsu WH. Overexpression of Aiolos promotes epithelial-mesenchymal transition and cancer stem cell-like properties in lung cancer cells. Sci Rep. 2019;9(1):2991. doi:10.1038/s41598-019-39545-z
Bjorklund CC, Lu L, Kang J, et al. Rate of CRL4(CRBN) substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood Cancer J. 2015;5(10):e354. doi:10.1038/bcj.2015.66
Yamashita M, Kuehn HS, Okuyama K, et al. A variant in human AIOLOS impairs adaptive immunity by interfering with IKAROS. Nat Immunol. 2021;22(7):893-903. doi:10.1038/s41590-021-00951-z
Yamashita M, Morio T. AIOLOS variants causing immunodeficiency in human and mice. Front Immunol. 2022;13:866582. doi:10.3389/fimmu.2022.866582
Qiu J, Zhang J, Ji Y, et al. Tissue signals imprint Aiolos expression in ILC2s to modulate type 2 immunity. Mucosal Immunol. 2021;14(6):1306-1322. doi:10.1038/s41385-021-00431-5
Lazarian G, Yin S, Ten Hacken E, et al. A hotspot mutation in transcription factor IKZF3 drives B cell neoplasia via transcriptional dysregulation. Cancer Cell. 2021;39(3):380-393. doi:10.1016/j.ccell.2021.02.003
Li L, Ding X, Wang X, et al. Polymorphisms of IKZF3 gene and autoimmune thyroid diseases: associated with Graves' disease but not with Hashimoto's thyroiditis. Cell Physiol Biochem. 2018;45(5):1787-1796. doi:10.1159/000487870
Cai X, Qiao Y, Diao C, et al. Association between polymorphisms of the IKZF3 gene and systemic lupus erythematosus in a Chinese Han population. PLoS One. 2014;9(10):e108661. doi:10.1371/journal.pone.0108661
Lessard CJ, Adrianto I, Ice JA, et al. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am J Hum Genet. 2012;90(4):648-660. doi:10.1016/j.ajhg.2012.02.023
Hong Y, Wang Q, Song YL, et al. Relationship between IKZF3 gene single nucleotide polymorphisms and childhood acute lymphoblastic leukemia. Article in Chinese. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2021;29(3):690-695. doi:10.19746/j.cnki.issn.1009-2137.2121.03.006
Stefanović M, Životić I, Stojković L, Dinčić E, Stanković A, Živković M. The association of genetic variants IL2RA rs2104286, IFI30 rs11554159 and IKZF3 rs12946510 with multiple sclerosis onset and severity in patients from Serbia. J Neuroimmunol. 2020;347:577346. doi:10.1016/j.jneuroim.2020.577346
Ye LX, Fu CW, Jiang F, Meng W. Association between IKZF3 gene polymorphisms and systemic lupus erythematosus in Han ethnic group in southern China: a case-control study. Article in Chinese. Zhonghua Liu Xing Bing Xue Za Zhi. 2016;37(7):996-1002. doi:10.3760/cma.j.issn.0254-6450.2016.07.018
Blekic M, Kljaic Bukvic B, Aberle N, et al. 17q12-21 and asthma: interactions with early-life environmental exposures. Ann Allergy Asthma Immunol. 2013;110(5):347-353. doi:10.1016/j.anai.2013.01.021
Hitomi Y, Ueno K, Kawai Y, et al. POGLUT1, the putative effector gene driven by rs2293370 in primary biliary cholangitis susceptibility locus chromosome 3q13.33. Sci Rep. 2019;9(1):102. doi:10.1038/s41598-018-36490-1
Verlaan DJ, Berlivet S, Hunninghake GM, et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet. 2009;85(3):377-393. doi:10.1016/j.ajhg.2009.08.007
Yan Q, Brehm J, Pino-Yanes M, et al. A meta-analysis of genome-wide association studies of asthma in Puerto Ricans. Eur Respir J. 2017;49(5):1601505. doi:10.1183/13993003.01505-2016
Chen JB, Zhang J, Hu HZ, Xue M, Jin YJ. Polymorphisms of TGFB1, TLE4 and MUC22 are associated with childhood asthma in Chinese population. Allergol Immunopathol (Madr). 2017;45(5):432-438. doi:10.1016/j.aller.2016.10.021
Keshari PK, Harbo HF, Myhr KM, Aarseth JH, Bos SD, Berge T. Allelic imbalance of multiple sclerosis susceptibility genes IKZF3 and IQGAP1 in human peripheral blood. BMC Genet. 2016;17(1):59. doi:10.1186/s12863-016-0367-4
Hitomi Y, Kojima K, Kawashima M, et al. Identification of the functional variant driving ORMDL3 and GSDMB expression in human chromosome 17q12-21 in primary biliary cholangitis. Sci Rep. 2017;7(1):2904. doi:10.1038/s41598-017-03067-3
Ustiugova AS, Korneev KV, Kuprash DV, Afanasyeva A. Functional SNPs in the human autoimmunity-associated locus 17q12-21. Genes (Basel). 2019;10(2):77. doi:10.3390/genes10020077
Marinho S, Custovic A, Marsden P, Smith JA, Simpson A. 17q12-21 variants are associated with asthma and interact with active smoking in an adult population from the United Kingdom. Ann Allergy Asthma Immunol. 2012;108(6):402-411.e9. doi:10.1016/j.anai.2012.03.002