Electrostatic interactions between charge regulated spherical macroions.


Journal

The European physical journal. E, Soft matter
ISSN: 1292-895X
Titre abrégé: Eur Phys J E Soft Matter
Pays: France
ID NLM: 101126530

Informations de publication

Date de publication:
29 Nov 2023
Historique:
received: 04 08 2023
accepted: 20 10 2023
medline: 29 11 2023
pubmed: 29 11 2023
entrez: 29 11 2023
Statut: epublish

Résumé

We study the interaction between two charge regulating spherical macroions with dielectric interior and dissociable surface groups immersed in a monovalent electrolyte solution. The charge dissociation is modelled via the Frumkin-Fowler-Guggenheim isotherm, which allows for multiple adsorption equilibrium states. The interactions are derived from the solutions of the mean-field Poisson-Boltzmann type theory with charge regulation boundary conditions. For a range of conditions we find symmetry breaking transitions from symmetric to asymmetric charge distribution exhibiting annealed charge patchiness, which results in like-charge attraction even in a univalent electrolyte-thus fundamentally modifying the nature of electrostatic interactions in charge-stabilized colloidal suspensions.

Identifiants

pubmed: 38019363
doi: 10.1140/epje/s10189-023-00373-9
pii: 10.1140/epje/s10189-023-00373-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

115

Subventions

Organisme : National Natural Science Foundation of China
ID : 1203401
Organisme : Chinese academy of sciences
ID : Strategic Priority Research Program XDB33000000

Informations de copyright

© 2023. The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.

Références

R.H. French, V.A. Parsegian, R. Podgornik, R.F. Rajter, A. Jagota, J. Luo, D. Asthagiri, M.K. Chaudhury, Y.-M. Chiang, S. Granick, S. Kalinin, M. Kardar, R. Kjellander, D.C. Langreth, J. Lewis, S. Lustig, D. Wesolowski, J.S. Wettlaufer, W.-Y. Ching, M. Finnis, F. Houlihan, O.A. von Lilienfeld, C.J. van Oss, T. Zemb, Rev. Mod. Phys. 82, 1887 (2010). https://doi.org/10.1103/RevModPhys.82.1887
doi: 10.1103/RevModPhys.82.1887
W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, Phys. Today 53, 38 (2000). https://doi.org/10.1063/1.1325230
doi: 10.1063/1.1325230
M. Muthukumar, Physics of Charged Macromolecules (Synthetic and Biological Systems publisher Cambridge University Press, 2023)
P.G. De Gennes, P. Pincus, R.M. Velasco, F. Brochard, J. Phys. France 37, 1461 (1976). https://doi.org/10.1051/jphys:0197600370120146100
doi: 10.1051/jphys:0197600370120146100
M.L. Henle, C.D. Santangelo, D.M. Patel, P.A. Pincus, Europhys. Lett. 66, 284 (2004). https://doi.org/10.1209/epl/i2003-10205-1
doi: 10.1209/epl/i2003-10205-1
A. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005). https://doi.org/10.1016/j.progpolymsci.2005.07.006
doi: 10.1016/j.progpolymsci.2005.07.006
G.C. Wong, Curr. Opin. Colloid Interface Sci. 11, 310 (2006). https://doi.org/10.1016/j.cocis.2006.12.003
doi: 10.1016/j.cocis.2006.12.003
P. Pincus, Macromolecules 24, 2912 (1991). https://doi.org/10.1021/ma00010a043
doi: 10.1021/ma00010a043
M.N. Tamashiro, E. Hernández-Zapata, P.A. Schorr, M. Balastre, M. Tirrell, P. Pincus, J. Chem. Phys. 115, 1960 (2001). https://doi.org/10.1063/1.1381579
doi: 10.1063/1.1381579
C. Schneider, A. Jusufi, R. Farina, F. Li, P. Pincus, M. Tirrell, M. Ballauff, Langmuir 24, 10612 (2008). https://doi.org/10.1021/la802303z
doi: 10.1021/la802303z
H.-X. Zhou, X. Pang, Chem. Rev. 118, 1691 (2018). https://doi.org/10.1021/acs.chemrev.7b00305
doi: 10.1021/acs.chemrev.7b00305
P. Pincus, J.-F. Joanny, D. Andelman, Europhys. Lett. 11, 763 (1990). https://doi.org/10.1209/0295-5075/11/8/012
doi: 10.1209/0295-5075/11/8/012
G. Cevc, in Encyclopedia of Biophysics, edited by G. C. K. Roberts and A. Watts. publisher Springer Berlin Heidelberg 2018) pp. 1446–1452
N. Dan, Colloids Surf., B 27, 41 (2003). https://doi.org/10.1016/S0927-7765(02)00041-3
doi: 10.1016/S0927-7765(02)00041-3
X. Gao, S. Hong, Z. Liu, T. Yue, J. Dobnikar, X. Zhang, Nanoscale 11, 1949 (2019). https://doi.org/10.1039/C8NR10447F
doi: 10.1039/C8NR10447F
A.G. Cherstvy, Phys. Chem. Chem. Phys. 13, 9942 (2011). https://doi.org/10.1039/C0CP02796K
doi: 10.1039/C0CP02796K
A. Šiber, R. Podgornik, Phys. Rev. E 76, 061906 (2007). https://doi.org/10.1103/PhysRevE.76.061906
doi: 10.1103/PhysRevE.76.061906
R. Zandi, B. Dragnea, A. Travesset, R. Podgornik, Phys. Rep. 847, 1 (2020). https://doi.org/10.1016/j.physrep.2019.12.005
doi: 10.1016/j.physrep.2019.12.005
M. Dijkstra, E. Luijten, Nat. Mater. 20, 762 (2021). https://doi.org/10.1038/s41563-021-01014-2
doi: 10.1038/s41563-021-01014-2
E.J. Verwey, J.T.G. Overbeek, Theory of the stability of Lyophobic Colloids (Publisher Elsevier address Amsterdam, 1948)
T. Markovich, D. Andelman, and R. Podgornik, in Handbook of Lipid Membranes, edited by C. R. Safynia and J. O. Raedler ( publisher Taylor and Francis, 2021) pp. 99–128
V.A. Vasileva, D.A. Mazur, Y.A. Budkov, J. Chem. Phys. 159, 024709 (2023). https://doi.org/10.1063/5.0158247
doi: 10.1063/5.0158247
R. Blossey, The Poisson-Boltzmann Equation: An Introduction, Springer Briefs in Physics ( publisher Springer Nature, address Springer Nature Tiergartenstrasse 15 - 17 69121 Heidelberg Germany, 2023)
Y.S. Jho, M. Kanduč, A. Naji, R. Podgornik, M.W. Kim, P.A. Pincus, Phys. Rev. Lett. 101, 188101 (2008). https://doi.org/10.1103/PhysRevLett.101.188101
doi: 10.1103/PhysRevLett.101.188101
A. Naji, M. Kanduč, J. Forsman, R. Podgornik, J. Chem. Phys. 139, 150901 (2013). https://doi.org/10.1063/1.4824681
doi: 10.1063/1.4824681
H. Ohshima, Electrical Phenomena at Interfaces and Biointerfaces (Publisher John Wiley and Sons Inc, UK, 2012). https://doi.org/10.1002/9781118135440
doi: 10.1002/9781118135440
A.V. Filippov, A.F. Pal’, A.N. Starostin, A.S. Ivanov, JETP Lett. 83, 546 (2006). https://doi.org/10.1134/s0021364006120058
doi: 10.1134/s0021364006120058
S.V. Siryk, A. Bendandi, A. Diaspro, W. Rocchia, J. Chem. Phys. 155, 114114 (2021). https://doi.org/10.1063/5.0056120
doi: 10.1063/5.0056120
S.V. Siryk, W. Rocchia, J. Phys. Chem. B 126, 10400 (2022). https://doi.org/10.1021/acs.jpcb.2c05564
doi: 10.1021/acs.jpcb.2c05564
D. Andelman, in Handbook of Biological Physics: Structure and Dynamics of Membranes. ed. by R. Lipowsky, E. Sackmann (Publisher Elsevier, 1995), pp.603–642
J. Dobnikar, D. Haložan, M. Brumen, H.-H. Von Grünberg, R. Rzehak, Comput. Phys. Commun. 159, 73 (2004). https://doi.org/10.1016/j.cpc.2003.10.001
doi: 10.1016/j.cpc.2003.10.001
J. Dobnikar, Y. Chen, R. Rzehak, H. Von Grünberg, J. Chem. Phys. 119, 4971 (2003). https://doi.org/10.1063/1.1595642
doi: 10.1063/1.1595642
A.L. Kolesnikov, D.A. Mazur, Y.A. Budkov, Europhys. Lett. 140, 16001 (2022). https://doi.org/10.1209/0295-5075/ac9252
doi: 10.1209/0295-5075/ac9252
M. Borkovec, B. Jönsson, and G. J. M. Koper, in Surface and Colloid Science, edited by E. Matijević (Publisher Springer, 2001) pp. 99–340
A. Naydenov, P.A. Pincus, S.A. Safran, Langmuir 23, 12016 (2007). https://doi.org/10.1021/la702085x
doi: 10.1021/la702085x
R. Brewster, P.A. Pincus, S.A. Safran, Phys. Rev. Lett. 101, 128101 (2008). https://doi.org/10.1103/PhysRevLett.101.128101
doi: 10.1103/PhysRevLett.101.128101
G.M. Ong, A. Gallegos, J. Wu, Langmuir 36, 11918 (2020). https://doi.org/10.1021/acs.langmuir.0c02000
doi: 10.1021/acs.langmuir.0c02000
A. Gallegos, J. Wu, J. Chem. Eng. Data 65, 5630 (2020). https://doi.org/10.1021/acs.jced.0c00625
doi: 10.1021/acs.jced.0c00625
P. Khunpetch, A. Majee, R. Podgornik, Soft Matter 18, 2597 (2022). https://doi.org/10.1039/D1SM01665B
doi: 10.1039/D1SM01665B
P. Khunpetch, A. Majee, H. Ruixuan, R. Podgornik, Phys. Rev. E 108, 024402 (2023). https://doi.org/10.1103/PhysRevE.108.024402
doi: 10.1103/PhysRevE.108.024402
I. Popa, P. Sinha, M. Finessi, P. Maroni, G. Papastavrou, M. Borkovec, Phys. Rev. Lett. 104, 228301 (2010). https://doi.org/10.1103/PhysRevLett.104.228301
doi: 10.1103/PhysRevLett.104.228301
M. Lund, B. Jönsson, Q. Rev, Biophys. 46, 265 (2013). https://doi.org/10.1017/S003358351300005X
doi: 10.1017/S003358351300005X
G. Trefalt, S.H. Behrens, M. Borkovec, Langmuir 32, 380 (2016). https://doi.org/10.1021/acs.langmuir.5b03611
doi: 10.1021/acs.langmuir.5b03611
G. Trefalt, T. Palberg, M. Borkovec, Curr. Opin. Colloid Interface Sci. 27, 9 (2017). https://doi.org/10.1016/j.cocis.2016.09.008
doi: 10.1016/j.cocis.2016.09.008
Y. Avni, D. Andelman, R. Podgornik, Curr. Opin. Electrochem. 13, 70 (2019). https://doi.org/10.1016/j.coelec.2018.10.014
doi: 10.1016/j.coelec.2018.10.014
A. Kubincová, P.H. Hünenberger, M. Krishnan, J. Chem. Phys. 152, 104713 (2020). https://doi.org/10.1063/1.5141346
doi: 10.1063/1.5141346
N. Adžić, R. Podgornik, Eur. Phys. J. E 37, 49 (2014). https://doi.org/10.1140/epje/i2014-14049-6
doi: 10.1140/epje/i2014-14049-6
N. Adžić, R. Podgornik, Phys. Rev. E 91, 022715 (2015). https://doi.org/10.1103/PhysRevE.91.022715
doi: 10.1103/PhysRevE.91.022715
N. Adžić, R. Podgornik, J. Chem. Phys. 144, 214901 (2016). https://doi.org/10.1063/1.4952980
doi: 10.1063/1.4952980
S.H. Behrens, M. Borkovec, J. Phys. Chem. B 103, 2918 (1999). https://doi.org/10.1021/jp984099w
doi: 10.1021/jp984099w
P.M. Biesheuvel, J. Colloid Interface Sci. 275, 514 (2004). https://doi.org/10.1016/j.jcis.2004.02.069
doi: 10.1016/j.jcis.2004.02.069
M. Borkovec, S.H. Behrens, J. Phys. Chem. B 112, 10796 (2008). https://doi.org/10.1021/jp805595z
doi: 10.1021/jp805595z
T. Obstbaum, U. Sivan, Langmuir 38, 8477 (2022). https://doi.org/10.1021/acs.langmuir.2c01352
doi: 10.1021/acs.langmuir.2c01352
D. Chan, T.W. Healy, L.R. White, J. Chem. Soc., Faraday Trans. 72, 2844 (1976). https://doi.org/10.1039/F19767202844
doi: 10.1039/F19767202844
D. McCormack, S.L. Carnie, D.Y.C. Chan, J. Colloid Interface Sci. 169, 177 (1995). https://doi.org/10.1006/jcis.1995.1019
doi: 10.1006/jcis.1995.1019
S.H. Behrens, M. Borkovec, Phys. Rev. E 60, 7040 (1999). https://doi.org/10.1103/PhysRevE.60.7040
doi: 10.1103/PhysRevE.60.7040
D.Y.C. Chan, T.W. Healy, T. Supasiti, S. Usui, J. Colloid Interface Sci. 296, 150 (2006). https://doi.org/10.1016/j.jcis.2005.09.003
doi: 10.1016/j.jcis.2005.09.003
N. Boon, R. van Roij, J. Chem. Phys. 134, 054706 (2011). https://doi.org/10.1063/1.3533279
doi: 10.1063/1.3533279
M. Krishnan, J. Chem. Phys. 146, 205101 (2017). https://doi.org/10.1063/1.4983485
doi: 10.1063/1.4983485
A. Behjatian, R. Walker-Gibbons, A.A. Schekochihin, M. Krishnan, Langmuir 38, 786 (2022). https://doi.org/10.1021/acs.langmuir.1c02801
doi: 10.1021/acs.langmuir.1c02801
E. Reiner, C. Radke, Adv. Colloid Interface Sci. 47, 59 (1993). https://doi.org/10.1016/0001-8686(93)80014-3
doi: 10.1016/0001-8686(93)80014-3
R. Ettelaie, R. Buscall, Adv. Colloid Interface Sci. 61, 131 (1995). https://doi.org/10.1016/0001-8686(95)00263-P
doi: 10.1016/0001-8686(95)00263-P
F.R. Zypman, Langmuir 38, 3561 (2022). https://doi.org/10.1021/acs.langmuir.2c00141
doi: 10.1021/acs.langmuir.2c00141
J.E. Sader, D.Y.C. Chan, J. Colloid Interface Sci. 213, 268 (1999). https://doi.org/10.1006/jcis.1999.6131
doi: 10.1006/jcis.1999.6131
J.C. Neu, Phys. Rev. Lett. 82, 1072 (1999). https://doi.org/10.1103/PhysRevLett.82.1072
doi: 10.1103/PhysRevLett.82.1072
E. Trizac, J.-L. Raimbault, Phys. Rev. E 60, 6530 (1999). https://doi.org/10.1103/PhysRevE.60.6530
doi: 10.1103/PhysRevE.60.6530
A. Majee, M. Bier, R. Podgornik, Soft Matter 14, 985 (2018). https://doi.org/10.1039/c7sm02270k
doi: 10.1039/c7sm02270k
A. Majee, M. Bier, R. Blossey, R. Podgornik, Phys. Rev. E 100, 050601 (2019). https://doi.org/10.1103/PhysRevE.100.050601
doi: 10.1103/PhysRevE.100.050601
A. Majee, M. Bier, R. Blossey, R. Podgornik, Phys. Rev. Research 2, 043417 (2020). https://doi.org/10.1103/PhysRevResearch.2.043417
doi: 10.1103/PhysRevResearch.2.043417
D. Harries, R. Podgornik, V.A. Parsegian, E. Mar-Or, D. Andelman, J. Chem. Phys. 124, 224702 (2006). https://doi.org/10.1063/1.2198534
doi: 10.1063/1.2198534
J. Yuan, K. Takae, H. Tanaka, Phys. Rev. Lett. 128, 158001 (2022). https://doi.org/10.1103/PhysRevLett.128.158001
doi: 10.1103/PhysRevLett.128.158001
M.M. Baksh, M. Jaros, J.T. Groves, Nature 427, 139 (2004). https://doi.org/10.1038/nature02209
doi: 10.1038/nature02209
E.W. Gomez, N.G. Clack, H.-J. Wu, J.T. Groves, Soft Matter 5, 1931 (2009). https://doi.org/10.1039/B821510C
doi: 10.1039/B821510C
L. Javidpour, A. Božič, A. Naji, R. Podgornik, Soft Matter 17, 4296 (2021). https://doi.org/10.1039/d1sm00232e
doi: 10.1039/d1sm00232e
A.V. Finkelstein, Protein Physics (Second Edition ( publisher Elsevier, 2016). https://doi.org/10.13140/RG.2.1.1319.8320
R.A. Marcus, J. Chem. Phys. 23, 1057 (1955). https://doi.org/10.1063/1.1742191
doi: 10.1063/1.1742191
R. Podgornik, J. Chem. Phys. 149, 104701 (2018). https://doi.org/10.1063/1.5045237
doi: 10.1063/1.5045237
L. Koopal, W. Tan, M. Avena, Adv. Colloid Interface Sci. 280, 102138 (2020). https://doi.org/10.1016/j.cis.2020.102138
doi: 10.1016/j.cis.2020.102138
A. Abin-Bazaine, A. C. Trujillo, and M. Olmos-Marquez, in Wastewater Treatment, edited by M. Ince and O. K. Ince ( publisher IntechOpen, address Rijeka, 2022) Chap. chapter 2 https://doi.org/10.5772/intechopen.104260
I. Teraoka, Polymer solutions: An Introduction to Physical Properties (Publisher John Wiley and Sons Inc, address New York, 2002)
doi: 10.1002/0471224510
Y. Avni, R. Podgornik, D. Andelman, J. Chem. Phys. 153, 024901 (2020). https://doi.org/10.1063/5.0011623
doi: 10.1063/5.0011623
Y. Avni, T. Markovich, R. Podgornik, D. Andelman, Soft Matter 14, 6058 (2018). https://doi.org/10.1039/c8sm00728d
doi: 10.1039/c8sm00728d
B.W. Ninham, V.A. Parsegian, J. Theor. Biol. 31, 405 (1971). https://doi.org/10.1016/0022-5193(71)90019-1
doi: 10.1016/0022-5193(71)90019-1
J. Landsgesell, L. Nová, O. Rud, F. Uhlík, D. Sean, P. Hebbeker, C. Holm, P. Košovan, Soft Matter 15, 1155 (2019). https://doi.org/10.1039/C8SM02085J
doi: 10.1039/C8SM02085J
J. Landsgesell, P. Hebbeker, O. Rud, R. Lunkad, P. Košovan, C. Holm, Macromolecules 53, 3007 (2020). https://doi.org/10.1021/acs.macromol.0c00260
doi: 10.1021/acs.macromol.0c00260
A. Bakhshandeh, D. Frydel, Y. Levin, Phys. Chem. Chem. Phys. 22, 24712 (2020). https://doi.org/10.1039/D0CP03633A
doi: 10.1039/D0CP03633A
A. Bakhshandeh, D. Frydel, Y. Levin, Langmuir 38, 13963 (2022). https://doi.org/10.1021/acs.langmuir.2c02313
doi: 10.1021/acs.langmuir.2c02313
L. Fink, J. Feitelson, R. Noff, T. Dvir, C. Tamburu, U. Raviv, Langmuir 33(23), 5636 (2017). https://doi.org/10.1021/acs.langmuir.7b00596
doi: 10.1021/acs.langmuir.7b00596
L. Fink, A. Steiner, O. Szekely, P. Szekely, U. Raviv, Langmuir 35, 9694 (2019). https://doi.org/10.1021/acs.langmuir.9b00778
doi: 10.1021/acs.langmuir.9b00778
J. Schwinger, L. L. Deraad, K. A. Milton, W.-Y. Tsai, and J. Norton, Classical Electrodynamics, Frontiers in Physics ( publisher Westview Press, address Philadelphia, PA, 1998)
A.C. Maggs, R. Podgornik, Soft Matter 12, 1219 (2016). https://doi.org/10.1039/c5sm01757b
doi: 10.1039/c5sm01757b
J.T.G. Overbeek, Colloids and Surfaces 51, 61 (1990). https://doi.org/10.1016/0166-6622(90)80132-n
doi: 10.1016/0166-6622(90)80132-n
G. Lamm, title The poisson–boltzmann equation, in Reviews in Computational Chemistry ( publisher John Wiley and Sons, Ltd, 2003) Chap. chapter 4, pp. 147–365 https://doi.org/10.1002/0471466638.ch4
A. Majee, M. Bier, S. Dietrich, J. Chem. Phys. 145, 064707 (2016). https://doi.org/10.1063/1.4960623
doi: 10.1063/1.4960623
R. Bebon, A. Majee, J. Chem. Phys. 153, 044903 (2020). https://doi.org/10.1063/5.0013298
doi: 10.1063/5.0013298
J. Landsgesell, P. Hebbeker, O. Rud, R. Lunkad, P. Košovan, C. Holm, Macromolecules 53, 3007 (2020). https://doi.org/10.1021/acs.macromol.0c00260
doi: 10.1021/acs.macromol.0c00260
E. J. Verwey and J. T. G. Overbeek, Theory of the stability of Lyophobic Colloids ( publisher Elsevier, address Amsterdam, 1948)
Y.A. Budkov, A.L. Kolesnikov, J. Stat. Mech: Theory Exp. 2022, 053205 (2022). https://doi.org/10.1088/1742-5468/ac6a5b
doi: 10.1088/1742-5468/ac6a5b
P.E. Brandyshev, Y.A. Budkov, J. Chem. Phys. 158, 174114 (2023). https://doi.org/10.1063/5.0148466
doi: 10.1063/5.0148466
R. Podgornik, Chem. Phys. Lett. 163, 531 (1989). https://doi.org/10.1016/0009-2614(89)85181-4
doi: 10.1016/0009-2614(89)85181-4
A.A. Kornyshev, D.A. Kossakowski, S. Leikin, J. Chem. Phys. 97, 6809 (1992). https://doi.org/10.1063/1.463634
doi: 10.1063/1.463634
J. Wu, Chem. Rev. 122, 10821 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
doi: 10.1021/acs.chemrev.2c00097
Y.A. Budkov, A.L. Kolesnikov, Curr. Opin. Electrochem. 33, 100931 (2022). https://doi.org/10.1016/j.coelec.2021.100931
doi: 10.1016/j.coelec.2021.100931
J. Huang, JACS Au 3, 550 (2023). https://doi.org/10.1021/jacsau.2c00650
doi: 10.1021/jacsau.2c00650
R. Kjellander, Phys. Chem. Chem. Phys. 22, 23952 (2020). https://doi.org/10.1039/D0CP02742A
doi: 10.1039/D0CP02742A
R. Zhang, B.I. Shklovskii, Phys. Rev. E 72, 021405 (2005). https://doi.org/10.1103/PhysRevE.72.021405
doi: 10.1103/PhysRevE.72.021405
J. Lekner, Proc. R. Soc. A 468, 2829 (2012). https://doi.org/10.1098/rspa.2012.0133
doi: 10.1098/rspa.2012.0133
L. Zhang, H. Davis, A. Kornyshev, D. Kroll, Chem. Phys. Lett. 229, 638 (1994). https://doi.org/10.1016/0009-2614(94)01099-4
doi: 10.1016/0009-2614(94)01099-4
M. Krishnan, I. Mönch, P. Schwille, Nano Lett. 7, 1270 (2007). https://doi.org/10.1021/nl0701861
doi: 10.1021/nl0701861
A. Klaassen, F. Liu, F. Mugele, I. Siretanu, Langmuir 38, 914 (2022). https://doi.org/10.1021/acs.langmuir.1c02077
doi: 10.1021/acs.langmuir.1c02077
F.L. Barroso da Silva, B. Jönsson, Soft Matter 5, 2862 (2009). https://doi.org/10.1039/B902039J
doi: 10.1039/B902039J
F. L. Barroso da Silva, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, ( publisher Elsevier, 2023)
B.K. Radak, C. Chipot, D. Suh, S. Jo, W. Jiang, J.C. Phillips, K. Schulten, B. Roux, J. Chem. Theory Comput. 13, 5933 (2017). https://doi.org/10.1021/acs.jctc.7b00875
doi: 10.1021/acs.jctc.7b00875
T. Curk, J. Yuan, E. Luijten, J. Chem. Phys. 156, 044122 (2022). https://doi.org/10.1063/5.0066432
doi: 10.1063/5.0066432
N. Aho, P. Buslaev, A. Jansen, P. Bauer, G. Groenhof, B. Hess, J. Chem. Theory Comput. 18, 6148 (2022). https://doi.org/10.1021/acs.jctc.2c00516
doi: 10.1021/acs.jctc.2c00516
V. Martins de Oliveira, R. Liu, J. Shen, Curr. Opin. Struct. Biol. 77, 102498 (2022). https://doi.org/10.1016/j.sbi.2022.102498
doi: 10.1016/j.sbi.2022.102498
P. Buslaev, N. Aho, A. Jansen, P. Bauer, B. Hess, G. Groenhof, J. Chem. Theory Comput. 18, 6134 (2022). https://doi.org/10.1021/acs.jctc.2c00517
doi: 10.1021/acs.jctc.2c00517
A. Bakhshandeh, A.P. dos Santos, Y. Levin, J. Phys. Chem. B 124, 11762 (2020). https://doi.org/10.1021/acs.jpcb.0c09446
doi: 10.1021/acs.jpcb.0c09446

Auteurs

Hu Ruixuan (H)

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

Arghya Majee (A)

Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.

Jure Dobnikar (J)

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China.
Songshan Lake Materials Laboratory, Guangdong, 523808, Dongguan, China.

Rudolf Podgornik (R)

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. podgornikrudolf@ucas.ac.cn.
CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. podgornikrudolf@ucas.ac.cn.
Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. podgornikrudolf@ucas.ac.cn.
Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China. podgornikrudolf@ucas.ac.cn.
Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia. podgornikrudolf@ucas.ac.cn.

Classifications MeSH