Evaluation of Molecular Interactions and Cellular Dynamics at the Maternal-Fetal Interface During Placental Morphogenesis.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 30 11 2023
pubmed: 29 11 2023
entrez: 29 11 2023
Statut: ppublish

Résumé

Molecular events at the maternal-fetal interface establish successful pregnancies. Identifying and characterizing the heterogeneous cell population and their cross-talk at the cellular and molecular levels are essential to expand our knowledge on the progression and maintenance of pregnancy. In this chapter, we briefly discuss the organization of maternal-fetal interface in mice/rats and humans. We illustrate methods for studying the cell composition using flow cytometry, immunocytochemical and biochemical studies, intercellular interaction using co-culture system and spheroid assay, and function of trophoblast cells using ELISA, RNA sequencing, mass spectrometry (MS) to analyze the proteome, invasion assay, and scratch wound assay.

Identifiants

pubmed: 38019391
doi: 10.1007/978-1-0716-3495-0_5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

45-76

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Ain R, Trinh M-L, Soares MJ (2004) Interleukin-11 signaling is required for the differentiation of natural killer cells at the maternal–fetal interface. Dev Dyn 231:700–708
pubmed: 15499555 doi: 10.1002/dvdy.20183
Rossant J, Cross J (2002) Extraembryonic lineages. In: Rossant J, Tam PP (eds) Mouse development; patterning, morphogenesis and organogenesis. Academic, San Diego, pp 155–180
Simmons DG, Natale DR, Begay V, Hughes M, Leutz A, Cross JC (2008) Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth. Development 135(12):2083–2091
pubmed: 18448564 doi: 10.1242/dev.020099
Simmons DG, Cross JC (2005) Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol 284:12–24
pubmed: 15963972 doi: 10.1016/j.ydbio.2005.05.010
Watson ED, Cross JC (2005) Development of structures and transport functions in the mouse placenta. Physiology (Bethesda) 20:180–193
pubmed: 15888575
Ain R, Canham LN, Soares MJ (2003) Gestation stage-dependent intrauterine trophoblast cell invasion in the rat and mouse: novel endocrine phenotype and regulation. Dev Biol 260:176–190
pubmed: 12885563 doi: 10.1016/S0012-1606(03)00210-0
Wiemer D, Ain R, Ohboshi S, Soares MJ (2003) Migratory trophoblast cells express a newly identified member of the prolactin gene. J Endocrinol 179:335–346
doi: 10.1677/joe.0.1790335
Nandy D, Das S, Islam S, Ain R (2020) Trophoblast cells regulate phenotypic switching of vascular smooth muscle cells at the uteroplacental interface. Placenta 93:64–73
pubmed: 32250741 doi: 10.1016/j.placenta.2020.02.017
Rai A, Cross JC (2014) Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol 387:131–141
pubmed: 24485853 doi: 10.1016/j.ydbio.2014.01.015
Boyd J, Hamilton W (1970) The human placenta, vol 8. W. Heffer and Sons, Cambridge, pp 77–78
doi: 10.1007/978-1-349-02807-8
Moore KL, Persaud T, Torchia MG (2012) The developing human: Clinically oriented embryology. Elsevier, Amsterdam
Sun T, Gonzalez TL, Deng N, DiPentito R, Clark EL, Lee B et al (2020) Sexually dimorphic crosstalk at the maternal-fetal interface. J Clin Encrionol Metab 105(12):e4831–e4847
doi: 10.1210/clinem/dgaa503
Faas MM, deVos P (2017) Uterine NK cells and macrophages in pregnancy. Placenta 56:44–52
pubmed: 28284455 doi: 10.1016/j.placenta.2017.03.001
Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26:300–311
pubmed: 17975221 doi: 10.1634/stemcells.2007-0594
Tsagias N, Koliakos I, Karagiannis V, Eleftheriadou M, Koliakos GG (2011) Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes. Transfus Med 21:253–361
pubmed: 21623971 doi: 10.1111/j.1365-3148.2011.01076.x
Demir R, Kaufmann P, Castellucci M, Erbengi T, Kotowski A (1989) Fetal vasculogenesis and angiogenesis in human placental villi. Cells Tissues Organs 136(3):190–203
doi: 10.1159/000146886
Simister NE, Story CM (1997) Human placental Fc receptors and the transmission of antibodies 848 from mother to fetus. J Reprod Immunol 37(1):1–23
pubmed: 9501287 doi: 10.1016/S0165-0378(97)00068-5
Ntrivalas E, Kwak-Kim J, Beaman K, Mantouvalos H, Gilman-Sachs A (2006) An in vitro co-culture model to study cytokine profiles of natural killer cells during maternal immune cell-trophoblast interactions. J Soc Gynecol Investig 13(3):196–202
pubmed: 16516503 doi: 10.1016/j.jsgi.2005.12.009
Saha S, Choudhury J, Ain R (2015) MicroRNA-141-3p and miR-200a-3p regulate insulin-like growth factor 2 during mouse placental development. Mol Cell Endocrinol 414:186–193
pubmed: 26247408 doi: 10.1016/j.mce.2015.07.030
Chakraborty S, Islam S, Saha S, Ain R (2018) Dexamethasone-induced intra-uterine growth restriction impacts NOSTRIN and its downstream effector genes in the rat mesometrial uterus. Sci Rep 8:8342
pubmed: 29844445 pmcid: 5974239 doi: 10.1038/s41598-018-26590-3
Chakraborty S, Ain R (2017) Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem 292(16):6600–6620
pubmed: 28235804 pmcid: 5399110 doi: 10.1074/jbc.M116.742627
Basak T, Dey AK, Banerjee R, Paul S, Maiti TK, Ain R (2021) Sequestration of eIF4A by angiomotin: a novel mechanism to restrict global protein synthesis in trophoblast cells. Stem Cells 39(2):210–226
pubmed: 33237582 doi: 10.1002/stem.3305
Fest S, Aldo PB, Abrahams VM, Visintin I, Alvero A, Chen R et al (2007) Trophoblast-macrophage interactions: a regulatory network for the protection of pregnancy. Am J Reprod Immunol 57(1):55–66
pubmed: 17156192 doi: 10.1111/j.1600-0897.2006.00446.x
Hamzic E, Cartwright JE, Keogh RJ, Whitley GS, Greenhill D, Hoppe A (2008) Live cell image analysis of cell-cell interactions reveals the specific targeting of vascular smooth muscle cells by fetal trophoblasts. Exp Cell Res 314(7):1455–1464
pubmed: 18314101 doi: 10.1016/j.yexcr.2008.01.017
Krikun G, Mor G, Alvero A, Guller S, Schatz F, Sapi E et al (2004) A novel immortalized human endometrial stromal cell line with normal progestational response. Endocrinology 145(5):2291–2296
pubmed: 14726435 doi: 10.1210/en.2003-1606
You Y, Stelzl P, Zhang Y, Porter J, Liu H, Liao AH et al (2019) Novel 3D in vitro models to evaluate trophoblast migration and invasion. Am J Reprod Immunol 81(3):e13076
pubmed: 30582662 doi: 10.1111/aji.13076
Saha S, Chakrabarty S, Bhattacharya A, Biswas A, Ain R (2017) MicroRNA regulation of transthyretin in trophoblast differentiation and intra-uterine growth restriction. Sci Rep 7:16548
pubmed: 29185488 pmcid: 5707432 doi: 10.1038/s41598-017-16566-0
Stefanoska I, Jovanović Krivokuća M, Vasilijić S, Ćujić D, Vićovac L (2013) Prolactin stimulates cell migration and invasion by human trophoblast in vitro. Placenta 34(9):775–783
pubmed: 23849393 doi: 10.1016/j.placenta.2013.06.305
Desforges M, Harris LK, Aplin JD (2015) Elastin-derived peptides stimulate trophoblast migration and invasion: a positive feedback loop to enhance spiral artery remodelling. Mol Hum Reprod 21(1):95–104
pubmed: 25245255 doi: 10.1093/molehr/gau089
Chang WL, Liu YW, Dang YL, Jiang XX, Xu H, Huang X et al (2018) PLAC8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion and migration. Development 145(2):dev148932
pubmed: 29361555 pmcid: 5825838 doi: 10.1242/dev.148932
Chui A, Zainuddin N, Rajaraman G, Murthi P, Brennecke SP, Ignjatovic V et al (2012) Placental syndecan expression is altered in human idiopathic fetal growth restriction. Am J Pathol 180(2):693–702
pubmed: 22138583 doi: 10.1016/j.ajpath.2011.10.023
Tarrade A, Lai Kuen R, Malassiné A, Tricottet V, Blain P, Vidaud M et al (2001) Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta. Lab Investig 81(9):1199–1211
pubmed: 11555668 doi: 10.1038/labinvest.3780334
Chakraborty S, Bose R, Islam S, Das S, Ain R (2020) Harnessing the autophagic network is essential for trophoblast stem cell differentiation. Stem Cells Dev 29(11):682–694
pubmed: 32143554 doi: 10.1089/scd.2019.0296
Chakraborty S, Ain R (2018) NOSTRIN: a novel modulator of trophoblast giant cell differentiation. Stem Cell Res 31:135–146
pubmed: 30086473 doi: 10.1016/j.scr.2018.07.023
Zhu D, Gong X, Miao L, Fang J, Zhang J (2017) Efficient induction of syncytiotrophoblast layer II cells from trophoblast stem cells by canonical Wnt signaling activation. Stem Cell Rep 9:2034–2049
doi: 10.1016/j.stemcr.2017.10.014
Asanoma K, Rumi MA, Kent LN, Chakraborty D, Renaud SJ, Wake N et al (2011) FGF4-dependent stem cells derived from rat blastocysts differentiate along the trophoblast lineage. Dev Biol 351(1):110–119
pubmed: 21215265 pmcid: 3039089 doi: 10.1016/j.ydbio.2010.12.038
Sahgal N, Knipp GT, Liu B, Chapman BM, Dai G, Soares MJ (2000) Identification of two new nonclassical members of the rat prolactin family. J Mol Endocrinol 24:95–108
pubmed: 10657001 doi: 10.1677/jme.0.0240095
Faria TN, Deb S, Kwok SCM, Talamantes F, Soares MJ (1990) Ontogeny of placental lactogen-I and placental lactogen-II expression in the developing rat placenta. Dev Biol 141:279–291
pubmed: 2210037 doi: 10.1016/0012-1606(90)90384-U
Campbell WJ, Deb S, Kwok SCM, Joslin J, Soares MJ (1989) Differential expression of placental lactogen-II and prolactin-like protein-A in the rat chorioallantoic placenta. Endocrinology 125:1565–1574
pubmed: 2667962 doi: 10.1210/endo-125-3-1565
Durkee TJ, McLean MP, Hales DB, Payne AH, Waterman MR, Khan I et al (1992) P450 (17α) and P450scc gene expression and regulation in the rat placenta. Endocrinology 130:1309–1317
pubmed: 1537294
Yamamoto T, Chapman BM, Johnson DC, Givens CR, Mellon SH, Soares MJ (1996) Cytochrome P450 17α-hydroxylase gene expression in differentiating rat trophoblast cells. J Endocrinol 150:161–168
pubmed: 8708557 doi: 10.1677/joe.0.1500161
Duckworth ML, Schroedter IC, Friesen HG (1990) Cellular localization of rat placental lactogen-II and rat prolactin-like proteins A and B by in situ hybridization. Placenta 11:143–155
pubmed: 2343034 doi: 10.1016/S0143-4004(05)80176-6
Deb S, Faria TN, Roby KF, Larsen D, Talamantes F, Soares MJ (1991) Identification and characterization of a new member of the placental prolactin family: placental lactogen-I variant. J Biol Chem 266:1605–1610
pubmed: 1988439 doi: 10.1016/S0021-9258(18)52337-1
Dai G, Lu L, Tang S, Peal MJ, Soares MJ (2002) The prolactin family miniarray: a tool for evaluating uteroplacental/trophoblast endocrine cell phenotypes. Reproduction 124:755–765
pubmed: 12530913 doi: 10.1530/rep.0.1240755
Knipp GT, Liu B, Audus KL, Fujii H, Ono T, Soares MJ (2000) Fatty acid transport regulatory proteins in the developing rat placenta and in trophoblast cell culture models. Placenta 21:367–375
pubmed: 10833372 doi: 10.1053/plac.1999.0484
Campbell WJ, Larsen D, Deb S, Kwok SCM, Soares MJ (1991) Expression of alkaline phosphatase in differentiated rat labyrinthine trophoblast tissue. Placenta 12:227–237
pubmed: 1754573 doi: 10.1016/0143-4004(91)90004-Y
Arenas-Hernandez M, Sanchez-Rodriguez EN, Mial TN, Robertson SA, Gomez-Lopez N (2015) Isolation of leukocytes from the murine tissues at the maternal-fetal interface. J Vis Exp 99:e52866
He C, Wang M, Yan Z, Zhang S, Liu H (2018) Isolation and culture of vascular smooth muscle cells from rat placenta. J Cell Physiol 234(6):7675–7682
pubmed: 30478916 doi: 10.1002/jcp.27721
Maldonado-Estrada J, Menu E, Roques P, Barre-Sinoussi F, Chaouat G (2004) Evaluation of Cytokeratin 7 as an accurate intracellular marker with which to assess the purity of placental villous trophoblast cells by flow cytometry. J Immunol Methods 286(1–2):21–34
pubmed: 15087219 doi: 10.1016/j.jim.2003.03.001
Laird SM, Mariee N, Wei L, Li TC (2011) Measurements of CD56+ cells in peripheral blood and endometrium by flow cytometry and immunohistochemical staining in situ. Hum Reprod 26(6):1331–1337
pubmed: 21471157 doi: 10.1093/humrep/der104

Auteurs

Madhurima Paul (M)

Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.

Rupasri Ain (R)

Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India. rupasri@iicb.res.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH