Trophoblast Organoids as a Novel Tool to Study Human Placental Development and Function.
Cytotrophoblast Extravillous trophoblast
Human placenta
Syncytiotrophoblast
Trophoblast organoids
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
30
11
2023
pubmed:
29
11
2023
entrez:
29
11
2023
Statut:
ppublish
Résumé
The human placenta provides the site of exchange between the maternal and fetal bloodstreams, acts as an endocrine organ, and has immunological functions. The majority of pregnancy disorders including preeclampsia and fetal growth restriction have their roots in pathological placentation. Yet, the underlying molecular causes of these complications remain largely unknown, not least due to the lack of reliable in vitro models. Recent establishment of 2D human trophoblast stem cells and 3D trophoblast organoids has been a major advancement that opened new avenues for trophoblast research. Here we provide a protocol detailing isolation of cytotrophoblast from the first trimester human placenta, establishment of trophoblast organoids, their culture and differentiation conditions. Overall, we describe an in vitro system that offers an excellent model to study the molecular basis of placental development and disease.
Identifiants
pubmed: 38019403
doi: 10.1007/978-1-0716-3495-0_17
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
195-222Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Hemberger M, Hanna CW, Dean W (2020) Mechanisms of early placental development in mouse and humans. Nat Rev Genet 21:27–43. https://doi.org/10.1038/s41576-019-0169-4
doi: 10.1038/s41576-019-0169-4
pubmed: 31534202
Turco MY, Moffett A (2019) Development of the human placenta. Development 146:dev163428. https://doi.org/10.1242/dev.163428
doi: 10.1242/dev.163428
pubmed: 31776138
Knöfler M, Haider S, Saleh L et al (2019) Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 76:3479–3496. https://doi.org/10.1007/s00018-019-03104-6
doi: 10.1007/s00018-019-03104-6
pubmed: 31049600
pmcid: 6697717
Okae H, Toh H, Sato T et al (2018) Derivation of human trophoblast stem cells. Cell Stem Cell 22:50–63.e6. https://doi.org/10.1016/j.stem.2017.11.004
doi: 10.1016/j.stem.2017.11.004
pubmed: 29249463
Haider S, Meinhardt G, Saleh L et al (2018) Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2018.07.004
Turco MY, Gardner L, Kay RG et al (2018) Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 564:263–267. https://doi.org/10.1038/s41586-018-0753-3
doi: 10.1038/s41586-018-0753-3
pubmed: 30487605
pmcid: 7220805
Lancaster MA, Huch M (2019) Disease modelling in human organoids. Dis Model Mech 12. https://doi.org/10.1242/dmm.039347
Schutgens F, Clevers H (2020) Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol 15:211–234. https://doi.org/10.1146/annurev-pathmechdis-012419-032611
doi: 10.1146/annurev-pathmechdis-012419-032611
pubmed: 31550983
Kim J, Koo B-K, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584. https://doi.org/10.1038/s41580-020-0259-3
doi: 10.1038/s41580-020-0259-3
pubmed: 32636524
pmcid: 7339799
Saha B, Ganguly A, Home P et al (2020) TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: an implication in early human pregnancy loss. Proc Natl Acad Sci U S A 117:17864–17875. https://doi.org/10.1073/pnas.2002449117
doi: 10.1073/pnas.2002449117
pubmed: 32669432
pmcid: 7395512
Meinhardt G, Haider S, Kunihs V et al (2020) Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proc Natl Acad Sci U S A 117:13562–13570. https://doi.org/10.1073/pnas.2002630117
doi: 10.1073/pnas.2002630117
pubmed: 32482863
pmcid: 7306800
Hornbachner R, Lackner A, Haider S et al (2021) MSX2 safeguards syncytiotrophoblast fate of human trophoblast stem cells. Proc Natl Acad Sci U S A 118(37):e2105130118
doi: 10.1073/pnas.2105130118
pubmed: 34507999
pmcid: 8449346
Kliman HJ, Nestler JE, Sermasi E et al (1986) Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118:1567–1582. https://doi.org/10.1210/endo-118-4-1567
doi: 10.1210/endo-118-4-1567
pubmed: 3512258
Tarrade A, Lai Kuen R, Malassiné A et al (2001) Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta. Lab Investig 81:1199–1211. https://doi.org/10.1038/labinvest.3780334
doi: 10.1038/labinvest.3780334
pubmed: 11555668
Sandra, Haider Andreas Ian, Lackner Bianca et al (2022) Transforming growth factor-β signaling governs the differentiation program of extravillous trophoblasts in the developing human placenta Proceedings of the National Academy of Sciences 119(28). https://doi.org/10.1073/pnas.2120667119
Kaela M, Varberg Esteban M, Dominguez Boryana et al (2023) Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape Abstract Nature Communications 14(1). https://doi.org/10.1038/s41467-023-40424-5
Chen, Dong Shuhua, Fu Rowan M et al (2022) A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells Abstract Nature Communications 13(1). https://doi.org/10.1038/s41467-022-30207-9
Mariyan J, Jeyarajah Gargi, Jaju Bhattad Rachel D et al (2022) The multifaceted role of GCM1 during trophoblast differentiation in the human placenta Proceedings of the National Academy of Sciences 119(49). https://doi.org/10.1073/pnas.2203071119
Kaela M, Varberg Khursheed, Iqbal Masanaga et al (2021) ASCL2 reciprocally controls key trophoblast lineage decisions during hemochorial placenta development Significance Proceedings of the National Academy of Sciences 118(10). https://doi.org/10.1073/pnas.2016517118
Liheng, Yang Eleanor C, Semmes Cristian et al (2022) Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface eLife. https://doi.org/1110.7554/eLife.79794
(2024) Trophoblast organoids with physiological polarity model placental structure and function ABSTRACT Journal of Cell Science 137(5). https://doi.org/10.1242/jcs.261528