Trophoblast Organoids as a Novel Tool to Study Human Placental Development and Function.

Cytotrophoblast Extravillous trophoblast Human placenta Syncytiotrophoblast Trophoblast organoids

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 30 11 2023
pubmed: 29 11 2023
entrez: 29 11 2023
Statut: ppublish

Résumé

The human placenta provides the site of exchange between the maternal and fetal bloodstreams, acts as an endocrine organ, and has immunological functions. The majority of pregnancy disorders including preeclampsia and fetal growth restriction have their roots in pathological placentation. Yet, the underlying molecular causes of these complications remain largely unknown, not least due to the lack of reliable in vitro models. Recent establishment of 2D human trophoblast stem cells and 3D trophoblast organoids has been a major advancement that opened new avenues for trophoblast research. Here we provide a protocol detailing isolation of cytotrophoblast from the first trimester human placenta, establishment of trophoblast organoids, their culture and differentiation conditions. Overall, we describe an in vitro system that offers an excellent model to study the molecular basis of placental development and disease.

Identifiants

pubmed: 38019403
doi: 10.1007/978-1-0716-3495-0_17
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

195-222

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Hemberger M, Hanna CW, Dean W (2020) Mechanisms of early placental development in mouse and humans. Nat Rev Genet 21:27–43. https://doi.org/10.1038/s41576-019-0169-4
doi: 10.1038/s41576-019-0169-4 pubmed: 31534202
Turco MY, Moffett A (2019) Development of the human placenta. Development 146:dev163428. https://doi.org/10.1242/dev.163428
doi: 10.1242/dev.163428 pubmed: 31776138
Knöfler M, Haider S, Saleh L et al (2019) Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 76:3479–3496. https://doi.org/10.1007/s00018-019-03104-6
doi: 10.1007/s00018-019-03104-6 pubmed: 31049600 pmcid: 6697717
Okae H, Toh H, Sato T et al (2018) Derivation of human trophoblast stem cells. Cell Stem Cell 22:50–63.e6. https://doi.org/10.1016/j.stem.2017.11.004
doi: 10.1016/j.stem.2017.11.004 pubmed: 29249463
Haider S, Meinhardt G, Saleh L et al (2018) Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2018.07.004
Turco MY, Gardner L, Kay RG et al (2018) Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 564:263–267. https://doi.org/10.1038/s41586-018-0753-3
doi: 10.1038/s41586-018-0753-3 pubmed: 30487605 pmcid: 7220805
Lancaster MA, Huch M (2019) Disease modelling in human organoids. Dis Model Mech 12. https://doi.org/10.1242/dmm.039347
Schutgens F, Clevers H (2020) Human organoids: tools for understanding biology and treating diseases. Annu Rev Pathol 15:211–234. https://doi.org/10.1146/annurev-pathmechdis-012419-032611
doi: 10.1146/annurev-pathmechdis-012419-032611 pubmed: 31550983
Kim J, Koo B-K, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584. https://doi.org/10.1038/s41580-020-0259-3
doi: 10.1038/s41580-020-0259-3 pubmed: 32636524 pmcid: 7339799
Saha B, Ganguly A, Home P et al (2020) TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: an implication in early human pregnancy loss. Proc Natl Acad Sci U S A 117:17864–17875. https://doi.org/10.1073/pnas.2002449117
doi: 10.1073/pnas.2002449117 pubmed: 32669432 pmcid: 7395512
Meinhardt G, Haider S, Kunihs V et al (2020) Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proc Natl Acad Sci U S A 117:13562–13570. https://doi.org/10.1073/pnas.2002630117
doi: 10.1073/pnas.2002630117 pubmed: 32482863 pmcid: 7306800
Hornbachner R, Lackner A, Haider S et al (2021) MSX2 safeguards syncytiotrophoblast fate of human trophoblast stem cells. Proc Natl Acad Sci U S A 118(37):e2105130118
doi: 10.1073/pnas.2105130118 pubmed: 34507999 pmcid: 8449346
Kliman HJ, Nestler JE, Sermasi E et al (1986) Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118:1567–1582. https://doi.org/10.1210/endo-118-4-1567
doi: 10.1210/endo-118-4-1567 pubmed: 3512258
Tarrade A, Lai Kuen R, Malassiné A et al (2001) Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta. Lab Investig 81:1199–1211. https://doi.org/10.1038/labinvest.3780334
doi: 10.1038/labinvest.3780334 pubmed: 11555668
Sandra, Haider Andreas Ian, Lackner Bianca et al (2022) Transforming growth factor-β signaling governs the differentiation program of extravillous trophoblasts in the developing human placenta Proceedings of the National Academy of Sciences 119(28). https://doi.org/10.1073/pnas.2120667119
Kaela M, Varberg Esteban M, Dominguez Boryana et al (2023) Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape Abstract Nature Communications 14(1). https://doi.org/10.1038/s41467-023-40424-5
Chen, Dong Shuhua, Fu Rowan M et al (2022) A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells Abstract Nature Communications 13(1). https://doi.org/10.1038/s41467-022-30207-9
Mariyan J, Jeyarajah Gargi, Jaju Bhattad Rachel D et al (2022) The multifaceted role of GCM1 during trophoblast differentiation in the human placenta Proceedings of the National Academy of Sciences 119(49). https://doi.org/10.1073/pnas.2203071119
Kaela M, Varberg Khursheed, Iqbal Masanaga et al (2021) ASCL2 reciprocally controls key trophoblast lineage decisions during hemochorial placenta development Significance Proceedings of the National Academy of Sciences 118(10). https://doi.org/10.1073/pnas.2016517118
Liheng, Yang Eleanor C, Semmes Cristian et al (2022) Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface eLife. https://doi.org/1110.7554/eLife.79794
(2024) Trophoblast organoids with physiological polarity model placental structure and function ABSTRACT Journal of Cell Science 137(5). https://doi.org/10.1242/jcs.261528

Auteurs

Sandra Haider (S)

Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria. sandra.haider@meduniwien.ac.at.

Martin Knöfler (M)

Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria.

Paulina A Latos (PA)

Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria. paulina.latos@meduniwien.ac.at.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH