Dihydroartemisinin inhibits liver cancer cell migration and invasion by reducing ATP synthase production through CaMKK2/NCLX.

ATP synthase calcium /calmodulin-dependent protein kinase kinase 2 dihydroartemisinin liver cancer metastasis mitochondrial sodium/calcium exchanger protein

Journal

Oncology letters
ISSN: 1792-1082
Titre abrégé: Oncol Lett
Pays: Greece
ID NLM: 101531236

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 20 05 2023
accepted: 08 09 2023
medline: 29 11 2023
pubmed: 29 11 2023
entrez: 29 11 2023
Statut: epublish

Résumé

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and mitochondrial sodium/calcium exchanger protein (NCLX) are key regulatory factors in calcium homeostasis. Finding natural drugs that target regulators of calcium homeostasis is critical. Dihydroartemisinin (DHA) is considered to have anticancer effects. The present study aimed to investigate the mechanism of DHA in regulating liver cancer migration and invasion. The present study used HepG2 and HuH-7 cells and overexpressed CaMKK2 and knocked down CaMKK2 and NCLX. The antiproliferative activity of DHA on liver cancer cells was assessed through colony formation and EdU assays. Cell apoptosis was detected through YO-PRO-1/PI staining. The levels of reactive oxygen species (ROS) were measured using a ROS detection kit (DCFH-DA fluorescent probe). Cell migratory and invasive abilities were examined using wound healing and Transwell assays. The ATP production of liver cancer cells was detected using ATP fluorescent probes. Cell microfilaments were monitored for changes using Actin-Tracker Green-488. The effects of DHA on the expression of CaMKK2, NCLX, sodium/potassium-transporting ATPase subunit α-1 (ATP1A1) and ATP synthase subunit d, mitochondrial (ATP5H) were determined by western blotting and reverse transcription-quantitative PCR. The results revealed that DHA significantly inhibited proliferation, reduced ROS levels and promoted apoptosis in liver cancer cells. CaMKK2 overexpression significantly enhanced the invasive and migratory ability of liver cancer cells, whereas DHA inhibited the pro-migratory effects of CaMKK2 overexpression. DHA significantly reduced the mitochondrial ATP production and altered the arrangement of microfilaments in liver cancer cells. In addition, DHA significantly decreased the expression of CaMKK2, NCLX, ATP1A1 and ATP5H. Furthermore, by knockdown experiments of NCLX the results demonstrated that CaMKK2 downregulated the expression of ATP1A1 and ATP5H in liver cancer cells through NCLX. In conclusion, DHA may reduce ATP synthase production via the CaMKK2/NCLX signaling pathway to inhibit the invasive phenotype of liver cancer cells. It is essential to further investigate the effectiveness of DHA in the anticancer mechanism of liver cancer cells.

Identifiants

pubmed: 38020296
doi: 10.3892/ol.2023.14127
pii: OL-26-6-14127
pmc: PMC10660190
doi:

Types de publication

Journal Article

Langues

eng

Pagination

540

Informations de copyright

Copyright: © Chang et al.

Déclaration de conflit d'intérêts

The authors declare that they have no competing interests.

Références

Nat Commun. 2020 Jul 3;11(1):3347
pubmed: 32620768
J Clin Invest. 2018 Aug 31;128(9):4098-4114
pubmed: 30124467
Expert Opin Drug Discov. 2023 Jul-Dec;18(12):1379-1392
pubmed: 37655549
J Bone Oncol. 2020 Aug 02;25:100314
pubmed: 33005563
Acta Pharm Sin B. 2022 Mar;12(3):1163-1185
pubmed: 35530162
Am J Physiol Cell Physiol. 2004 Oct;287(4):C817-33
pubmed: 15355853
Cancer Res. 1991 Feb 1;51(3):794-8
pubmed: 1846317
Open Med (Wars). 2023 May 09;18(1):20230678
pubmed: 37727322
ACS Nano. 2023 Mar 28;17(6):5486-5502
pubmed: 36883602
Oxid Med Cell Longev. 2022 Jan 25;2022:8245614
pubmed: 35116094
J Transl Med. 2023 May 23;21(1):345
pubmed: 37221594
Elife. 2020 Sep 11;9:
pubmed: 32914752
Theranostics. 2020 May 16;10(14):6483-6499
pubmed: 32483465
Am J Chin Med. 2023;51(2):445-459
pubmed: 36891981
Int J Mol Sci. 2020 Oct 12;21(20):
pubmed: 33053689
Front Genet. 2022 May 13;13:854764
pubmed: 35646067
J Cell Mol Med. 2021 Feb;25(4):2238-2253
pubmed: 33439514
Cell Metab. 2022 Mar 1;34(3):355-377
pubmed: 35123658
Nat Commun. 2016 Aug 22;7:12336
pubmed: 27545456
Nature. 2020 Jun;582(7810):129-133
pubmed: 32494073
Molecules. 2023 Mar 03;28(5):
pubmed: 36903603
Cell Death Dis. 2022 Mar 16;13(3):241
pubmed: 35296653
J Biol Chem. 2017 Feb 3;292(5):1737-1748
pubmed: 27994059
Life (Basel). 2022 Jul 27;12(8):
pubmed: 36013308
Int J Mol Sci. 2023 Mar 14;24(6):
pubmed: 36982637
Curr Osteoporos Rep. 2019 Aug;17(4):169-177
pubmed: 31115859
Autophagy. 2018;14(4):685-701
pubmed: 29165041
Am J Chin Med. 2023;51(2):461-485
pubmed: 36655687
J Cell Biol. 2016 Aug 15;214(4):433-44
pubmed: 27502484
J Exp Clin Cancer Res. 2023 Aug 1;42(1):190
pubmed: 37525222
Acta Pharmacol Sin. 2022 Oct;43(10):2609-2623
pubmed: 35347248
Cell Death Dis. 2021 Nov 1;12(11):1040
pubmed: 34725334
Hepatology. 2015 Aug;62(2):505-20
pubmed: 25847065
J Biol Chem. 2023 Oct;299(10):105209
pubmed: 37660916
Front Pharmacol. 2023 Apr 28;14:1105427
pubmed: 37188272
Purinergic Signal. 2012 Sep;8(3):343-57
pubmed: 22528680
Cell Death Dis. 2023 Mar 16;14(3):199
pubmed: 36927870
Biomolecules. 2020 Mar 05;10(3):
pubmed: 32150849
Biochem Soc Trans. 2023 Aug 31;51(4):1661-1673
pubmed: 37641565
Nat Rev Urol. 2022 Jun;19(6):367-380
pubmed: 35474107
Front Mol Biosci. 2023 Mar 31;10:1156062
pubmed: 37065442
Cancer Manag Res. 2020 Nov 02;12:11031-11040
pubmed: 33173336
Oxid Med Cell Longev. 2019 Aug 19;2019:8781690
pubmed: 31531187
J Clin Invest. 2021 Nov 15;131(22):
pubmed: 34591791
Biochem Biophys Res Commun. 2023 Oct 1;675:130-138
pubmed: 37473527
Cells. 2023 Jan 11;12(2):
pubmed: 36672221
Cancers (Basel). 2023 Jan 29;15(3):
pubmed: 36765778
Front Pharmacol. 2021 Oct 07;12:720368
pubmed: 34690763
Mol Metab. 2022 Aug;62:101513
pubmed: 35562082
Mol Carcinog. 2021 Nov;60(11):769-783
pubmed: 34437731
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Oxid Med Cell Longev. 2021 Dec 10;2021:3456725
pubmed: 34925691
Cells. 2022 Dec 09;11(24):
pubmed: 36552754
Neurochem Res. 2021 Jan;46(1):108-119
pubmed: 32249386
Biochim Biophys Acta Mol Cell Res. 2022 Jul;1869(7):119252
pubmed: 35271909
Cancer Commun (Lond). 2022 Aug;42(8):716-749
pubmed: 35838183
Biochem Soc Trans. 2023 Feb 27;51(1):331-342
pubmed: 36815702
Nutrients. 2019 Sep 05;11(9):
pubmed: 31491956
Angew Chem Int Ed Engl. 2023 Oct 16;62(42):e202310774
pubmed: 37646232
Oncogene. 2018 Mar;37(12):1637-1653
pubmed: 29335519
Cell Death Dis. 2014 Apr 10;5:e1156
pubmed: 24722281
Front Pharmacol. 2021 Oct 08;12:720777
pubmed: 34690764
Nat Commun. 2022 May 26;13(1):2945
pubmed: 35618735
Cancers (Basel). 2020 Jul 04;12(7):
pubmed: 32635428
Cell Mol Life Sci. 2022 May 8;79(6):284
pubmed: 35526196

Auteurs

Jiang Chang (J)

Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China.

Chengyi Xin (C)

Department of Pharmacy, Bayannur Hospital, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China.

Yong Wang (Y)

Department of Neurosurgery, Hainan West Central Hospital, Danzhou, Hainan 571700, P.R. China.

Ying Wang (Y)

Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China.

Classifications MeSH