Changes in crop trait plasticity with domestication history: Management practices matter.
agroecology
functional traits
intercropping
organic agriculture
trait space
wheat
Journal
Ecology and evolution
ISSN: 2045-7758
Titre abrégé: Ecol Evol
Pays: England
ID NLM: 101566408
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
28
04
2023
revised:
18
10
2023
accepted:
19
10
2023
medline:
29
11
2023
pubmed:
29
11
2023
entrez:
29
11
2023
Statut:
epublish
Résumé
Crop domestication has led to the development of distinct trait syndromes, a series of constrained plant trait trade-offs to maximize yield in high-input agricultural environments, and potentially constrained trait plasticity. Yet, with the ongoing transition to organic and diversified agroecosystems, which create more heterogeneous nutrient availability, this constrained plasticity, especially in root functional traits, may be undesirable for nutrient acquisition. Such agricultural systems require a nuanced understanding of the soil-crop continuum under organic amendments and with intercropping, and the role crop genetic resources play in governing nutrient management and design. In this study, we use a functional traits lens to determine if crops with a range of domestication histories express different functional trait plasticity and how this expression changes with soil amendments and intercropping. We utilize a common garden experiment including five wheat (
Identifiants
pubmed: 38020689
doi: 10.1002/ece3.10690
pii: ECE310690
pmc: PMC10651313
doi:
Banques de données
Dryad
['10.5061/dryad.h9w0vt4nb']
Types de publication
Journal Article
Langues
eng
Pagination
e10690Informations de copyright
© 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Références
J Sci Food Agric. 2012 Jan 30;92(2):207-15
pubmed: 22083663
PLoS One. 2018 Jul 24;13(7):e0200646
pubmed: 30040842
Theor Appl Genet. 2005 May;110(8):1505-16
pubmed: 15841359
AoB Plants. 2018 Jan 24;10(1):ply006
pubmed: 29484152
Evol Appl. 2012 Dec;5(8):850-7
pubmed: 23346229
New Phytol. 2022 Aug;235(3):1018-1031
pubmed: 35510804
J Exp Bot. 2019 Nov 18;70(21):6019-6034
pubmed: 31504740
Ecol Lett. 2008 May;11(5):516-31
pubmed: 18279352
New Phytol. 2012 Oct;196(1):29-48
pubmed: 22889076
PLoS One. 2012;7(9):e44955
pubmed: 23028702
J Exp Bot. 2021 Feb 24;72(4):1166-1180
pubmed: 33080022
Evol Appl. 2010 Sep;3(5-6):480-93
pubmed: 25567941
Front Plant Sci. 2017 Jul 12;8:1196
pubmed: 28747919
Trends Ecol Evol. 2014 Dec;29(12):692-9
pubmed: 25459399
Plant Biol (Stuttg). 2017 May;19(3):475-483
pubmed: 28075047
Plant Cell Environ. 2015 Sep;38(9):1752-64
pubmed: 25132508
Microb Ecol. 2008 May;55(4):651-61
pubmed: 17768652
Proc Biol Sci. 2014 Oct 22;281(1793):
pubmed: 25185998
Plant Physiol. 2011 Jul;156(3):1078-86
pubmed: 21508183
Nat Rev Genet. 2013 Dec;14(12):840-52
pubmed: 24240513
Plant Physiol. 2016 Aug;171(4):2562-76
pubmed: 27342311
New Phytol. 2022 Jan;233(2):995-1010
pubmed: 34726792
Genetics. 2006 Jan;172(1):485-98
pubmed: 16157665
Front Plant Sci. 2016 Mar 30;7:373
pubmed: 27066028