The permissive binding theory of cancer.

cancer epigenetic evolution cancer evolution evolutionary mechanism invasion and metastasis protein interactions theory of cancer

Journal

Frontiers in oncology
ISSN: 2234-943X
Titre abrégé: Front Oncol
Pays: Switzerland
ID NLM: 101568867

Informations de publication

Date de publication:
2023
Historique:
received: 04 08 2023
accepted: 20 10 2023
medline: 29 11 2023
pubmed: 29 11 2023
entrez: 29 11 2023
Statut: epublish

Résumé

The later stages of cancer, including the invasion and colonization of new tissues, are actively mysterious compared to earlier stages like primary tumor formation. While we lack many details about both, we do have an apparently successful explanatory framework for the earlier stages: one in which genetic mutations hold ultimate causal and explanatory power. By contrast, on both empirical and conceptual grounds, it is not currently clear that mutations alone can explain the later stages of cancer. Can a different type of molecular change do better? Here, I introduce the "permissive binding theory" of cancer, which proposes that novel protein binding interactions are the key causal and explanatory entity in invasion and metastasis. It posits that binding is more abundant at baseline than we observe because it is restricted in normal physiology; that any large perturbation to physiological state revives this baseline abundance, unleashing many new binding interactions; and that a subset of these cause the cellular functions at the heart of oncogenesis, especially invasion and metastasis. Significant physiological perturbations occur in cancer cells in very early stages, and generally become more extreme with progression, providing interactions that continually fuel invasion and metastasis. The theory is compatible with, but not limited to, causal roles for the diverse molecular changes observed in cancer (e.g. gene expression or epigenetic changes), as these generally act causally upstream of proteins, and so may exert their effects by changing the protein binding interactions that occur in the cell. This admits the possibility that molecular changes that appear quite different may actually converge in creating the same few protein complexes, simplifying our picture of invasion and metastasis. If correct, the theory offers a concrete therapeutic strategy: targeting the key novel complexes. The theory is straightforwardly testable by large-scale identification of protein interactions in different cancers.

Identifiants

pubmed: 38023252
doi: 10.3389/fonc.2023.1272981
pmc: PMC10666763
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1272981

Informations de copyright

Copyright © 2023 Weisman.

Déclaration de conflit d'intérêts

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Cell. 2008 May 16;133(4):704-15
pubmed: 18485877
Acta Pharm Sin B. 2023 Oct;13(10):4060-4088
pubmed: 37799384
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5632-7
pubmed: 21415370
Bioessays. 2011 May;33(5):332-40
pubmed: 21503935
Int J Cancer. 2022 Jul 1;151(1):7-19
pubmed: 35113472
Methods Mol Biol. 2001;177:123-34
pubmed: 11530601
Cell Stem Cell. 2019 May 2;24(5):673-674
pubmed: 31051126
Nat Ecol Evol. 2023 Nov 9;:
pubmed: 37945946
Science. 2021 Oct;374(6563):eabf2911
pubmed: 34591642
Hum Genet. 2022 Jun;141(6):1195-1210
pubmed: 34432150
Science. 2002 Jul 5;297(5578):102-4
pubmed: 12098700
Cold Spring Harb Perspect Biol. 2011 Feb 01;3(2):
pubmed: 21421915
Cell. 2017 Feb 9;168(4):670-691
pubmed: 28187288
Signal Transduct Target Ther. 2020 Sep 23;5(1):213
pubmed: 32968059
Br J Cancer. 2019 Jul;121(1):37-50
pubmed: 31133691
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2140-5
pubmed: 26858460
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18034-9
pubmed: 16332960
Front Oncol. 2021 Feb 02;10:615375
pubmed: 33604295
Nature. 2023 Jun;618(7964):333-341
pubmed: 37165194
Biochim Biophys Acta. 2010 Jan;1805(1):105-17
pubmed: 19931353
Cell. 2014 Mar 27;157(1):267-71
pubmed: 24679541
Cancer Res. 2015 Sep 15;75(18):3713-9
pubmed: 26208905
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2221163120
pubmed: 37098061
Elife. 2018 Dec 18;7:
pubmed: 30561326
Cell. 1996 Aug 9;86(3):353-64
pubmed: 8756718
Cell. 2014 Feb 13;156(4):663-77
pubmed: 24529372
Elife. 2020 Oct 27;9:
pubmed: 33107822
Oncogenesis. 2017 Jul 3;6(7):e352
pubmed: 28671675
Nat Rev Genet. 2020 Jan;21(1):44-62
pubmed: 31548659
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15332-15342
pubmed: 32541020
Science. 2013 Mar 29;339(6127):1546-58
pubmed: 23539594
J Proteome Res. 2015 Mar 6;14(3):1535-46
pubmed: 25599653
Oncogene. 2017 Aug 24;36(34):4887-4900
pubmed: 28436947
Curr Opin Struct Biol. 2022 Jun;74:102370
pubmed: 35405427
J Mol Evol. 2022 Aug;90(3-4):244-257
pubmed: 35451603
Nat Genet. 2020 Nov;52(11):1137-1138
pubmed: 33128047
Science. 2011 Apr 22;332(6028):458-61
pubmed: 21512031
Protein Sci. 2022 Aug;31(8):e4371
pubmed: 35900020
Cancer Cell Int. 2022 Dec 9;22(1):394
pubmed: 36494720
Nat Genet. 2008 May;40(5):494-5
pubmed: 18443582
Nat Commun. 2017 Feb 16;8:14356
pubmed: 28205554
Elife. 2022 Jun 10;11:
pubmed: 35686729
FEBS J. 2016 Mar;283(5):791-802
pubmed: 26555863
Int J Cancer. 2003 Dec 10;107(5):688-95
pubmed: 14566816
Trends Pharmacol Sci. 2013 Jul;34(7):393-400
pubmed: 23725674
Nat Rev Cancer. 2018 Feb;18(2):128-134
pubmed: 29326430
Nat Ecol Evol. 2023 Apr;7(4):570-580
pubmed: 37024625
Cell. 1990 Jun 1;61(5):759-67
pubmed: 2188735
Nature. 2010 Dec 9;468(7325):829-33
pubmed: 21102433
Circ Res. 2015 Jan 16;116(2):216-8
pubmed: 25593268
Proc Natl Acad Sci U S A. 1976 Feb;73(2):549-53
pubmed: 1061157
Nat Genet. 2020 Mar;52(3):331-341
pubmed: 32025003
Cell. 2012 Dec 21;151(7):1457-73
pubmed: 23245941
FEBS Lett. 2002 Feb 20;513(1):2-10
pubmed: 11911873
Cancers (Basel). 2022 Feb 18;14(4):
pubmed: 35205794
J Cancer. 2022 Jul 4;13(9):2810-2843
pubmed: 35912015
Cell Genom. 2022 Feb 9;2(2):
pubmed: 35382456
J Cell Sci. 2004 Mar 15;117(Pt 8):1495-502
pubmed: 14996910
Methods Mol Biol. 2004;259:353-69
pubmed: 15250504
Science. 1977 Aug 26;197(4306):893-5
pubmed: 887927
Science. 2021 Oct;374(6563):eabf3066
pubmed: 34591612
Int J Mol Sci. 2023 Apr 17;24(8):
pubmed: 37108538
Science. 2019 Mar 15;363(6432):1150-1151
pubmed: 30872507
Environ Res. 2007 Nov;105(3):414-29
pubmed: 17692309
Cell. 2022 Feb 3;185(3):563-575.e11
pubmed: 35120664
Curr Issues Mol Biol. 1999;1(1-2):31-45
pubmed: 11475699
Science. 1977 Jun 10;196(4295):1161-6
pubmed: 860134
Proc Natl Acad Sci U S A. 1975 Sep;72(9):3585-9
pubmed: 1059147
Bioinformatics. 2018 Apr 1;34(7):1183-1191
pubmed: 29186335
Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2672-7
pubmed: 26929366
Cell. 2017 Dec 14;171(7):1611-1624.e24
pubmed: 29198524
Trends Cancer. 2022 Jun;8(6):494-505
pubmed: 35300951
Elife. 2022 May 16;11:
pubmed: 35575458
Prostate. 2019 Sep;79(13):1489-1497
pubmed: 31376205
Cell. 2017 Jul 27;170(3):564-576.e16
pubmed: 28753430
J Genet. 2021;100:
pubmed: 34187974
Science. 2011 Mar 25;331(6024):1559-64
pubmed: 21436443
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4914-9
pubmed: 21383188
Oncogene. 2014 Jan 2;33(1):116-28
pubmed: 23524583
Genes (Basel). 2021 Dec 31;13(1):
pubmed: 35052441
Cancer Cell. 2013 Oct 14;24(4):410-21
pubmed: 24135279
Nature. 1969 Oct 11;224(5215):177-8
pubmed: 5343519
J Cell Sci. 2012 Dec 1;125(Pt 23):5591-6
pubmed: 23420197
Nat Rev Cancer. 2017 Aug;17(8):502-508
pubmed: 28643779
Nature. 2002 Aug 22;418(6900):823
pubmed: 12192390
PLoS One. 2012;7(11):e49221
pubmed: 23155468

Auteurs

Caroline M Weisman (CM)

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States.

Classifications MeSH