The concerted proton-electron transfer mechanism of proton migration in the electrochemical interface.
Computational chemistry
Electrochemistry
Physical chemistry
Journal
iScience
ISSN: 2589-0042
Titre abrégé: iScience
Pays: United States
ID NLM: 101724038
Informations de publication
Date de publication:
17 Nov 2023
17 Nov 2023
Historique:
received:
04
04
2023
revised:
03
08
2023
accepted:
20
10
2023
medline:
29
11
2023
pubmed:
29
11
2023
entrez:
29
11
2023
Statut:
epublish
Résumé
The proton migration in the electrochemical interface is a fundamental electrochemical processes in proton involved reactions. We find fractional electron transfer, which is inversely proportional to the distance between the proton and electrode, during the proton migration under constant potential. The electrical energy carried by the transferred charge facilitates the proton to overcome the chemical barrier in the migration pathway, which is accounting for more than half electrical energy in the proton involved reactions. Consequently, less charge transfer and energy exchange take place in the reduction process. Therefore, the proton migration in the electrochemical interface is an essential component of the electrochemical reaction in terms of electron transfer and energy conversation, and are worthy of more attention in the rational design and optimization of electrochemical systems.
Identifiants
pubmed: 38026153
doi: 10.1016/j.isci.2023.108318
pii: S2589-0042(23)02395-7
pmc: PMC10661362
doi:
Types de publication
Journal Article
Langues
eng
Pagination
108318Informations de copyright
© 2023 The Author(s).
Déclaration de conflit d'intérêts
The authors declare no competing interests.
Références
J Phys Condens Matter. 2014 Jun 18;26(24):244108
pubmed: 24861088
ACS Appl Mater Interfaces. 2021 Nov 24;13(46):55611-55620
pubmed: 34779617
J Am Chem Soc. 2021 Jun 16;:
pubmed: 34133170
Phys Rev Lett. 2010 Jul 9;105(2):026102
pubmed: 20867718
Chem Rev. 2022 Jun 22;122(12):10777-10820
pubmed: 34928131
J Am Chem Soc. 2016 May 18;138(19):6292-7
pubmed: 27116595
J Am Chem Soc. 2020 Sep 9;142(36):15438-15444
pubmed: 32692913
Science. 2005 Jan 28;307(5709):555-8
pubmed: 15681379
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
Nature. 2021 Dec;600(7887):81-85
pubmed: 34853456
Science. 2015 Sep 11;349(6253):1208-13
pubmed: 26292706
J Am Chem Soc. 2022 Oct 5;144(39):18144-18152
pubmed: 36135972
J Phys Chem Lett. 2016 Apr 21;7(8):1471-7
pubmed: 27045040
J Chem Phys. 2017 Mar 14;146(10):104109
pubmed: 28298107
J Comput Chem. 2006 Nov 30;27(15):1787-99
pubmed: 16955487
J Chem Phys. 2014 Nov 14;141(18):184102
pubmed: 25399127
Nat Commun. 2018 Aug 10;9(1):3202
pubmed: 30097564
Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2208187119
pubmed: 36122216
J Chem Phys. 2016 Jan 7;144(1):014103
pubmed: 26747797
J Chem Phys. 2019 Jan 28;150(4):041706
pubmed: 30709274
J Chem Phys. 2014 Feb 28;140(8):084106
pubmed: 24588147
Chem Soc Rev. 2014 Jan 21;43(2):631-75
pubmed: 24186433
J Am Chem Soc. 2018 Dec 5;140(48):16773-16782
pubmed: 30406657
Chem Soc Rev. 2015 Apr 21;44(8):2060-86
pubmed: 25672249
Nat Rev Chem. 2021 Jul;5(7):466-485
pubmed: 37118441