Cascaded compression of size distribution of nanopores in monolayer graphene.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 24 10 2022
accepted: 28 09 2023
medline: 1 12 2023
pubmed: 30 11 2023
entrez: 29 11 2023
Statut: ppublish

Résumé

Monolayer graphene with nanometre-scale pores, atomically thin thickness and remarkable mechanical properties provides wide-ranging opportunities for applications in ion and molecular separations

Identifiants

pubmed: 38030784
doi: 10.1038/s41586-023-06689-y
pii: 10.1038/s41586-023-06689-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

956-963

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).
pubmed: 32533116 doi: 10.1038/s41565-020-0713-6
Zuo, P. et al. Near-frictionless ion transport within triazine framework membranes. Nature 617, 299–305 (2023).
pubmed: 37100908 pmcid: 10131500 doi: 10.1038/s41586-023-05888-x
Bai, J. W., Zhong, X., Jiang, S., Huang, Y. & Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 5, 190–194 (2010).
pubmed: 20154685 pmcid: 2901100 doi: 10.1038/nnano.2010.8
O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).
pubmed: 24490698 doi: 10.1021/nl404118f
Yang, Y. B. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).
pubmed: 31197007 doi: 10.1126/science.aau5321
Huang, S. et al. Millisecond lattice gasification for high-density CO
pubmed: 33627433 pmcid: 7904253 doi: 10.1126/sciadv.abf0116
O’Hern, S. C. et al. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015).
pubmed: 25915708 doi: 10.1021/acs.nanolett.5b00456
Hsu, K. et al. Multipulsed millisecond ozone gasification for predictable tuning of nucleation and nucleation-decoupled nanopore expansion in graphene for carbon capture. ACS Nano 15, 13230–13239 (2021).
pubmed: 34319081 pmcid: 8388115 doi: 10.1021/acsnano.1c02927
Cheng, C., Iyengar, S. A. & Karnik, R. Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes. Nat. Nanotechnol. 16, 989–995 (2021).
pubmed: 34239119 doi: 10.1038/s41565-021-00933-0
Shen, L. et al. Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Sci. Adv. 7, eabg6263 (2021).
pubmed: 34516873 pmcid: 8442935 doi: 10.1126/sciadv.abg6263
Thanh, N. T. K., Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014).
pubmed: 25003956 doi: 10.1021/cr400544s
Bergmann, R. B. & Bill, A. On the origin of logarithmic-normal distributions: an analytical derivation, and its application to nucleation and growth processes. J. Cryst. Growth 310, 3135–3138 (2008).
doi: 10.1016/j.jcrysgro.2008.03.034
Wang, J. T., Park, J. H., Lu, A. Y. & Kong, J. Electrical control of chemical vapor deposition of graphene. J. Am. Chem. Soc. 144, 22925–22932 (2022).
pubmed: 36475683 doi: 10.1021/jacs.2c08001
Bohdansky, J. A universal relation for the sputtering yield of monatomic solids at normal ion incidence. Nucl. Instrum. Methods Phys. Res. 2, 587–591 (1984).
doi: 10.1016/0168-583X(84)90271-4
Kim, H. et al. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6, 3614–3623 (2012).
pubmed: 22443380 doi: 10.1021/nn3008965
Wang, Z. J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506–1519 (2015).
pubmed: 25584770 doi: 10.1021/nn5059826
Pollard, A. J. et al. Quantitative characterization of defect size in graphene using Raman spectroscopy. Appl. Phys. Lett. 105, 253107 (2014).
doi: 10.1063/1.4905128
Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).
doi: 10.1016/j.carbon.2009.12.057
Zan, R., Ramasse, Q. M., Bangert, U. & Novoselov, K. S. Graphene reknits its holes. Nano Lett. 12, 3936–3940 (2012).
pubmed: 22765872 doi: 10.1021/nl300985q
Rodenbucher, C. et al. Local surface conductivity of transition metal oxides mapped with true atomic resolution. Nanoscale 10, 11498–11505 (2018).
pubmed: 29888770 doi: 10.1039/C8NR02562B
Wang, L. D. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).
pubmed: 28584292 doi: 10.1038/nnano.2017.72
Yuan, Z. et al. Predicting gas separation through graphene nanopore ensembles with realistic pore size distributions. ACS Nano 15, 1727–1740 (2021).
pubmed: 33439000 doi: 10.1021/acsnano.0c09420
Herm, Z. R. et al. Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340, 960–964 (2013).
pubmed: 23704568 doi: 10.1126/science.1234071
Lu, Y. Q. et al. Monolayer graphene membranes for molecular separation in high-temperature harsh organic solvents. Proc. Natl Acad. Sci. USA 118, e2111360118 (2021).
pubmed: 34508009 pmcid: 8449411 doi: 10.1073/pnas.2111360118
Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).
pubmed: 29074772 doi: 10.1126/science.aan5275
Huang, S. Q. et al. In situ nucleation-decoupled and site-specific incorporation of Å-scale pores in graphene via epoxidation. Adv. Mater. 34, 2206627 (2022).
doi: 10.1002/adma.202206627
Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).
pubmed: 16193041 doi: 10.1038/nature04165
Abe, S., Capek, R. K., De Geyter, B. & Hens, Z. Tuning the postfocused size of colloidal nanocrystals by the reaction rate: from theory to application. ACS Nano 6, 42–53 (2012).
pubmed: 22133359 doi: 10.1021/nn204008q
Li, Z. Y. et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2008).
pubmed: 18066049 doi: 10.1038/nature06470
Yao, Y. G. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).
pubmed: 29599236 doi: 10.1126/science.aan5412
Zhang, S. C. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543, 234–238 (2017).
pubmed: 28199307 doi: 10.1038/nature21051
Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
pubmed: 19423775 doi: 10.1126/science.1171245
Zhang, Z. M., Chen, S. & Liang, Y. Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 135, 1138–1146 (2010).
pubmed: 20419267 doi: 10.1039/b922045c
Bendiab, N. et al. Unravelling external perturbation effects on the optical phonon response of graphene. J. Raman Spectrosc. 49, 130–145 (2018).
doi: 10.1002/jrs.5267
Jang, D., Idrobo, J. C., Laoui, T. & Karnik, R. Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes. ACS Nano 11, 10042–10052 (2017).
pubmed: 28994572 doi: 10.1021/acsnano.7b04299
Chen, X. B. et al. Tunable pore size from sub-nanometer to a few nanometers in large-area graphene nanoporous atomically thin membranes. ACS Appl. Mater. Interfaces 13, 29926–29935 (2021).
doi: 10.1021/acsami.1c06243
Wang, S. F., Mahalingam, D., Sutisna, B. & Nunes, S. P. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. J. Mater. Chem. A 7, 11673–11682 (2019).
doi: 10.1039/C8TA10872B
Wang, C. X. et al. Aromatic porous polymer network membranes for organic solvent nanofiltration under extreme conditions. J. Mater. Chem. A 8, 15891–15899 (2020).
doi: 10.1039/C9TA10190J
Cheng, X. Q. et al. Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents. ACS Appl. Mater. Interfaces 9, 38877–38886 (2017).
pubmed: 29022696 doi: 10.1021/acsami.7b07373
Dai, J. et al. Fabrication and characterization of a defect-free mixed matrix membrane by facile mixing PPSU with ZIF-8 core-shell microspheres for solvent-resistant nanofiltration. J. Membrane Sci. 589, 117261 (2019).
doi: 10.1016/j.memsci.2019.117261
Ong, C. et al. Green synthesis of thin-film composite membranes for organic solvent nanofiltration. ACS Sustain. Chem. Eng. 8, 11541–11548 (2020).
doi: 10.1021/acssuschemeng.0c02320
Wang, A. Q. et al. Heterostructured MoS
doi: 10.1016/j.memsci.2022.120402
Liang, B. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat. Chem. 10, 961–967 (2018).
pubmed: 30038326 doi: 10.1038/s41557-018-0093-9
Echaide-Gorriz, C., Sorribas, S., Tellez, C. & Coronas, J. MOF nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for thin film nanocomposite organic solvent nanofiltration membranes. RSC Adv. 6, 90417–90426 (2016).
doi: 10.1039/C6RA17522H
Xu, Y. C., Tang, Y. P., Liu, L. F., Guo, Z. H. & Shao, L. Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy. J. Membrane Sci. 526, 32–42 (2017).
doi: 10.1016/j.memsci.2016.12.026
Xu, S. J., Shen, Q., Chen, G. E. & Xu, Z. L. Novel β-CD@ZIF-8 nanoparticles-doped poly(m-phenylene isophthalamide) (PMIA) thin-film nanocomposite (TFN) membrane for organic solvent nanofiltration (OSN). ACS Omega 3, 11770–11787 (2018).
pubmed: 30320272 pmcid: 6173514 doi: 10.1021/acsomega.8b01808
Darvishmanesh, S. et al. Novel polyphenylsulfone membrane for potential use in solvent nanofiltration. J. Membrane Sci. 379, 60–68 (2011).
doi: 10.1016/j.memsci.2011.05.045
Jimenez-Solomon, M. F., Song, Q. L., Jelfs, K. E., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016).
pubmed: 27135857 doi: 10.1038/nmat4638
Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29, 1603945 (2017).
doi: 10.1002/adma.201603945
Mahalingam, D. K., Wang, S. F. & Nunes, S. P. Stable graphene oxide cross-linked membranes for organic solvent nanofiltration. Ind. Eng. Chem. Res. 58, 23106–23113 (2019).
doi: 10.1021/acs.iecr.9b05169
Hai, Y. Y. et al. Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1,2,4,5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly(ether imide) support. J. Membrane Sci. 520, 19–28 (2016).
doi: 10.1016/j.memsci.2016.07.050
Navarro, M. et al. Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir–Schaefer technique for nanofiltration. ACS Appl. Mater. Interfaces 10, 1278–1287 (2018).
pubmed: 29243908 doi: 10.1021/acsami.7b17477
Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).
pubmed: 29170556 doi: 10.1038/nmat5025
Luo, D. et al. The wet-oxidation of a Cu(111) foil coated by single crystal graphene. Adv. Mater. 33, e2102697 (2021).
pubmed: 34309933 doi: 10.1002/adma.202102697
Wang, J. et al. Code source files for the paper entitled “Cascaded compression of size distribution of nanopores in monolayer graphene”. Zenodo https://doi.org/10.5281/zenodo.10085248 (2023).

Auteurs

Jiangtao Wang (J)

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA. wangjt@mit.edu.

Chi Cheng (C)

Department of Chemical Engineering, University of Melbourne, Parkville, Victoria, Australia. chi.cheng2@unsw.edu.au.
School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales, Australia. chi.cheng2@unsw.edu.au.

Xudong Zheng (X)

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

Juan Carlos Idrobo (JC)

Materials Science and Engineering Department, University of Washington, Seattle, WA, USA.

Ang-Yu Lu (AY)

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

Ji-Hoon Park (JH)

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

Bong Gyu Shin (BG)

Max Planck Institute for Solid State Research, Stuttgart, Germany.
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.

Soon Jung Jung (SJ)

Max Planck Institute for Solid State Research, Stuttgart, Germany.

Tianyi Zhang (T)

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

Haozhe Wang (H)

Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.

Guanhui Gao (G)

Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA.

Bongki Shin (B)

Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA.

Xiang Jin (X)

Department of Physics, Tsinghua University, Beijing, China.

Long Ju (L)

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.

Yimo Han (Y)

Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA.

Lain-Jong Li (LJ)

Department of Mechanical Engineering, University of Hong Kong, Hong Kong SAR, China.

Rohit Karnik (R)

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Jing Kong (J)

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA. jingkong@mit.edu.

Classifications MeSH