Cascaded compression of size distribution of nanopores in monolayer graphene.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
24
10
2022
accepted:
28
09
2023
medline:
1
12
2023
pubmed:
30
11
2023
entrez:
29
11
2023
Statut:
ppublish
Résumé
Monolayer graphene with nanometre-scale pores, atomically thin thickness and remarkable mechanical properties provides wide-ranging opportunities for applications in ion and molecular separations
Identifiants
pubmed: 38030784
doi: 10.1038/s41586-023-06689-y
pii: 10.1038/s41586-023-06689-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
956-963Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).
pubmed: 32533116
doi: 10.1038/s41565-020-0713-6
Zuo, P. et al. Near-frictionless ion transport within triazine framework membranes. Nature 617, 299–305 (2023).
pubmed: 37100908
pmcid: 10131500
doi: 10.1038/s41586-023-05888-x
Bai, J. W., Zhong, X., Jiang, S., Huang, Y. & Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 5, 190–194 (2010).
pubmed: 20154685
pmcid: 2901100
doi: 10.1038/nnano.2010.8
O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).
pubmed: 24490698
doi: 10.1021/nl404118f
Yang, Y. B. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).
pubmed: 31197007
doi: 10.1126/science.aau5321
Huang, S. et al. Millisecond lattice gasification for high-density CO
pubmed: 33627433
pmcid: 7904253
doi: 10.1126/sciadv.abf0116
O’Hern, S. C. et al. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015).
pubmed: 25915708
doi: 10.1021/acs.nanolett.5b00456
Hsu, K. et al. Multipulsed millisecond ozone gasification for predictable tuning of nucleation and nucleation-decoupled nanopore expansion in graphene for carbon capture. ACS Nano 15, 13230–13239 (2021).
pubmed: 34319081
pmcid: 8388115
doi: 10.1021/acsnano.1c02927
Cheng, C., Iyengar, S. A. & Karnik, R. Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes. Nat. Nanotechnol. 16, 989–995 (2021).
pubmed: 34239119
doi: 10.1038/s41565-021-00933-0
Shen, L. et al. Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Sci. Adv. 7, eabg6263 (2021).
pubmed: 34516873
pmcid: 8442935
doi: 10.1126/sciadv.abg6263
Thanh, N. T. K., Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014).
pubmed: 25003956
doi: 10.1021/cr400544s
Bergmann, R. B. & Bill, A. On the origin of logarithmic-normal distributions: an analytical derivation, and its application to nucleation and growth processes. J. Cryst. Growth 310, 3135–3138 (2008).
doi: 10.1016/j.jcrysgro.2008.03.034
Wang, J. T., Park, J. H., Lu, A. Y. & Kong, J. Electrical control of chemical vapor deposition of graphene. J. Am. Chem. Soc. 144, 22925–22932 (2022).
pubmed: 36475683
doi: 10.1021/jacs.2c08001
Bohdansky, J. A universal relation for the sputtering yield of monatomic solids at normal ion incidence. Nucl. Instrum. Methods Phys. Res. 2, 587–591 (1984).
doi: 10.1016/0168-583X(84)90271-4
Kim, H. et al. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6, 3614–3623 (2012).
pubmed: 22443380
doi: 10.1021/nn3008965
Wang, Z. J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506–1519 (2015).
pubmed: 25584770
doi: 10.1021/nn5059826
Pollard, A. J. et al. Quantitative characterization of defect size in graphene using Raman spectroscopy. Appl. Phys. Lett. 105, 253107 (2014).
doi: 10.1063/1.4905128
Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).
doi: 10.1016/j.carbon.2009.12.057
Zan, R., Ramasse, Q. M., Bangert, U. & Novoselov, K. S. Graphene reknits its holes. Nano Lett. 12, 3936–3940 (2012).
pubmed: 22765872
doi: 10.1021/nl300985q
Rodenbucher, C. et al. Local surface conductivity of transition metal oxides mapped with true atomic resolution. Nanoscale 10, 11498–11505 (2018).
pubmed: 29888770
doi: 10.1039/C8NR02562B
Wang, L. D. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).
pubmed: 28584292
doi: 10.1038/nnano.2017.72
Yuan, Z. et al. Predicting gas separation through graphene nanopore ensembles with realistic pore size distributions. ACS Nano 15, 1727–1740 (2021).
pubmed: 33439000
doi: 10.1021/acsnano.0c09420
Herm, Z. R. et al. Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340, 960–964 (2013).
pubmed: 23704568
doi: 10.1126/science.1234071
Lu, Y. Q. et al. Monolayer graphene membranes for molecular separation in high-temperature harsh organic solvents. Proc. Natl Acad. Sci. USA 118, e2111360118 (2021).
pubmed: 34508009
pmcid: 8449411
doi: 10.1073/pnas.2111360118
Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).
pubmed: 29074772
doi: 10.1126/science.aan5275
Huang, S. Q. et al. In situ nucleation-decoupled and site-specific incorporation of Å-scale pores in graphene via epoxidation. Adv. Mater. 34, 2206627 (2022).
doi: 10.1002/adma.202206627
Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).
pubmed: 16193041
doi: 10.1038/nature04165
Abe, S., Capek, R. K., De Geyter, B. & Hens, Z. Tuning the postfocused size of colloidal nanocrystals by the reaction rate: from theory to application. ACS Nano 6, 42–53 (2012).
pubmed: 22133359
doi: 10.1021/nn204008q
Li, Z. Y. et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2008).
pubmed: 18066049
doi: 10.1038/nature06470
Yao, Y. G. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).
pubmed: 29599236
doi: 10.1126/science.aan5412
Zhang, S. C. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 543, 234–238 (2017).
pubmed: 28199307
doi: 10.1038/nature21051
Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
pubmed: 19423775
doi: 10.1126/science.1171245
Zhang, Z. M., Chen, S. & Liang, Y. Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 135, 1138–1146 (2010).
pubmed: 20419267
doi: 10.1039/b922045c
Bendiab, N. et al. Unravelling external perturbation effects on the optical phonon response of graphene. J. Raman Spectrosc. 49, 130–145 (2018).
doi: 10.1002/jrs.5267
Jang, D., Idrobo, J. C., Laoui, T. & Karnik, R. Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes. ACS Nano 11, 10042–10052 (2017).
pubmed: 28994572
doi: 10.1021/acsnano.7b04299
Chen, X. B. et al. Tunable pore size from sub-nanometer to a few nanometers in large-area graphene nanoporous atomically thin membranes. ACS Appl. Mater. Interfaces 13, 29926–29935 (2021).
doi: 10.1021/acsami.1c06243
Wang, S. F., Mahalingam, D., Sutisna, B. & Nunes, S. P. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. J. Mater. Chem. A 7, 11673–11682 (2019).
doi: 10.1039/C8TA10872B
Wang, C. X. et al. Aromatic porous polymer network membranes for organic solvent nanofiltration under extreme conditions. J. Mater. Chem. A 8, 15891–15899 (2020).
doi: 10.1039/C9TA10190J
Cheng, X. Q. et al. Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents. ACS Appl. Mater. Interfaces 9, 38877–38886 (2017).
pubmed: 29022696
doi: 10.1021/acsami.7b07373
Dai, J. et al. Fabrication and characterization of a defect-free mixed matrix membrane by facile mixing PPSU with ZIF-8 core-shell microspheres for solvent-resistant nanofiltration. J. Membrane Sci. 589, 117261 (2019).
doi: 10.1016/j.memsci.2019.117261
Ong, C. et al. Green synthesis of thin-film composite membranes for organic solvent nanofiltration. ACS Sustain. Chem. Eng. 8, 11541–11548 (2020).
doi: 10.1021/acssuschemeng.0c02320
Wang, A. Q. et al. Heterostructured MoS
doi: 10.1016/j.memsci.2022.120402
Liang, B. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat. Chem. 10, 961–967 (2018).
pubmed: 30038326
doi: 10.1038/s41557-018-0093-9
Echaide-Gorriz, C., Sorribas, S., Tellez, C. & Coronas, J. MOF nanoparticles of MIL-68(Al), MIL-101(Cr) and ZIF-11 for thin film nanocomposite organic solvent nanofiltration membranes. RSC Adv. 6, 90417–90426 (2016).
doi: 10.1039/C6RA17522H
Xu, Y. C., Tang, Y. P., Liu, L. F., Guo, Z. H. & Shao, L. Nanocomposite organic solvent nanofiltration membranes by a highly-efficient mussel-inspired co-deposition strategy. J. Membrane Sci. 526, 32–42 (2017).
doi: 10.1016/j.memsci.2016.12.026
Xu, S. J., Shen, Q., Chen, G. E. & Xu, Z. L. Novel β-CD@ZIF-8 nanoparticles-doped poly(m-phenylene isophthalamide) (PMIA) thin-film nanocomposite (TFN) membrane for organic solvent nanofiltration (OSN). ACS Omega 3, 11770–11787 (2018).
pubmed: 30320272
pmcid: 6173514
doi: 10.1021/acsomega.8b01808
Darvishmanesh, S. et al. Novel polyphenylsulfone membrane for potential use in solvent nanofiltration. J. Membrane Sci. 379, 60–68 (2011).
doi: 10.1016/j.memsci.2011.05.045
Jimenez-Solomon, M. F., Song, Q. L., Jelfs, K. E., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016).
pubmed: 27135857
doi: 10.1038/nmat4638
Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29, 1603945 (2017).
doi: 10.1002/adma.201603945
Mahalingam, D. K., Wang, S. F. & Nunes, S. P. Stable graphene oxide cross-linked membranes for organic solvent nanofiltration. Ind. Eng. Chem. Res. 58, 23106–23113 (2019).
doi: 10.1021/acs.iecr.9b05169
Hai, Y. Y. et al. Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1,2,4,5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly(ether imide) support. J. Membrane Sci. 520, 19–28 (2016).
doi: 10.1016/j.memsci.2016.07.050
Navarro, M. et al. Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir–Schaefer technique for nanofiltration. ACS Appl. Mater. Interfaces 10, 1278–1287 (2018).
pubmed: 29243908
doi: 10.1021/acsami.7b17477
Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).
pubmed: 29170556
doi: 10.1038/nmat5025
Luo, D. et al. The wet-oxidation of a Cu(111) foil coated by single crystal graphene. Adv. Mater. 33, e2102697 (2021).
pubmed: 34309933
doi: 10.1002/adma.202102697
Wang, J. et al. Code source files for the paper entitled “Cascaded compression of size distribution of nanopores in monolayer graphene”. Zenodo https://doi.org/10.5281/zenodo.10085248 (2023).